
12 October 2021 Constraint Programming 1

Constraint Programming

- An overview

• Higher Consistency Types: Path and i-consistency

• Consistency and Satisfiability

• Other Consistencies: Bounds- and SAC-Consistency

• Non-Binary Networks and Generalised Arc-Consistency

12 October 2021 Constraint Programming 2

Path-Consistency

- The following constraint network is obviously inconsistent:

- Nevertheless, it is arc-consistent: every binary constraint of difference (≠) is
arc-consistent whenever the constraint variables have at least 2 elements in
their domains.

- However, is is not path-consistent: no label {<a-va>, <b-vb>} that is consistent
(i.e. does not violate any constraint) can be extended to the third variable (c).

{<a-1>, <b-2>} ® c ≠ 1, c ≠ 2 ; {<a-2>, <b-1>} ® c ≠ 1, c ≠ 2

- This property is captured by the notion of path-consistency.

1 , 2

1 , 2 1 , 2

≠

≠

≠

a

b c

12 October 2021 Constraint Programming 3

Path-Consistency

Definition (Path Consistency):

• A constraint satisfaction problem is path-consistent if,

§ It is arc-consistent; and

§ Every consistent 2-compound label {xi-vi, xi-vj} can be extended to a
consistent label with a third variable xk (k ≠ i and k ≠ j).

- The second condition is more easily understood as

§ For every compound label {xi-vi, xj-vj}, and for every k (k ≠ i and k ≠j) there
must be a label xk-vk that supports {xi-vi, xj-vj}. In other words, the
compound label {xi-vi, xj-vj, xj-vj,} satisfies constraints cij, cik, and ckj.

12 October 2021 Constraint Programming 4

Path-Consistency

Example:

- By enforcing path consistency it is possible to avoid backtracking in the 4-
queens problem.

- In fact, q1-1 has only two supports in variable q3, namely q3-2 and q3-4.

However:

- < q1-1, q3-2 > cannot be extended to variable q4

- < q1-1, q3-4 > cannot be extended to variable q2

- Hence, value 1 can be safely removed from the domain of variable q1.

- With similar reasoning, it may be shown that none of the corners, and none of
the central positions can have a queen.

12 October 2021 Constraint Programming 5

Path-Consistency

- In general, and despite the previous example, maintaining path consistency does
not prune the domain of a variable, but rather prunes compound labels with
cardinality 2.

- This means that, imposing arc-consistency on variables xi and xj through variable
xk, will tighten the (possible non-existing) constraint between xi and xj.

- In the example, a constraint of
equality is imposed on variables b
and c, because the compound labels
{ b-1 , c-2 } and { b-2 , c-1} cannot be
extended to variable a.

=

1 , 2

1 , 2 1 , 2

≠≠
a

b c

Before path
consistency

1 , 2

1 , 2 1 , 2

≠≠
a

b c

After path
consistency

12 October 2021 Constraint Programming 6

Path-Consistency

- The constraints that are imposed by maintaining arc-consistency can be very
general, and are more easily understood if they are represented by means of
Boolean matrices (i.e. by extension).

Example:

- Matrix Mab encodes a binary constraint of
difference(≠) between variables a and b, each
with the same two values in their domains

- Matrix M13 represents a no_attack constraint
between queens in the 1st and 3rd rows, for the
4-queens problem.

Mab 1 2

1 0 1

2 1 0

M13 1 2 3 4

1 0 1 0 1

2 1 0 1 0

3 0 1 0 1

4 1 0 1 0

12 October 2021 Constraint Programming 7

Path-Consistency

- The imposition of path consistency, on variables xi and xj through variable xk
can be regarded as imposing a new constraint obtained by the Boolean
multiplication of matrices Mik and Mjk.

- The restriction to the initial constraint no_attack between queens 1 and 3, is
imposed by conjunction of the initial matrix M13 with matrix C13-4.

M14 1 2 3 4

1 0 1 1 0

2 1 0 1 1

3 1 1 0 1

4 0 1 1 0

M43 1 2 3 4

1 0 0 1 1

2 0 0 0 1

3 1 0 0 0

4 1 1 0 0

C13-4 1 2 3 4

1 1 0 0 1

2 1 1 1 1

3 1 1 1 1

4 1 0 0 1

M13 1 2 3 4

1 0 1 0 1

2 1 0 1 0

3 0 1 0 1

4 1 0 1 0

´ ®

C13-4 1 2 3 4

1 1 0 0 1

2 1 1 1 1

3 1 1 1 1

4 1 0 0 1

M13 1 2 3 4

1 0 0 0 1

2 1 0 1 0

3 0 1 0 1

4 1 0 0 0

®Ù

12 October 2021 Constraint Programming 8

Path-Consistency

- Indeed, the new matrix M’13 correctly
registers the fact that

- Compound label {q1-1, q3-2} does not
have support on q4 and is removed from
the initial constraint c13

- Compound label {q1-4, q3-3} does not have
support on q4 and is removed from the
initial constraint c13

M’13 1 2 3 4

1 0 0 0 1

2 1 0 1 1

3 1 1 0 1

4 1 0 0 0

1 1
1 1
1 1

1 1
1 1

1 1

12 October 2021 Constraint Programming 9

Path-Consistency

- The successive application of this tightening of the initial constraints will
eventually lead to the deletion of values from the domains of the variables, as
can be illustrated by the 4-queens problem.

- Firstly, constraint between variables q1 and q3 is tightened through variable q2,
as shown below.

- In this case, two compound labels {q1 -1, q3 -4} and {q1 -4, q3 -1} are removed
from the initial constraint c13 (i.e. no_attack(q1, q3).

- At this point, all values of both variables q1 and q3 still have supporting values
in the domain of the other variable (non-null rows and columns)

1\2 1 2 3 4 2\3 1 2 3 4 1\3 1 2 3 4 1\3 1 2 3 4

1 0 0 1 1 1 0 0 1 1 1 0 1 0 1 1 0 1 0 0

2 0 0 0 1 2 0 0 0 1 2 1 0 1 0 2 1 0 0 0

3 1 0 0 0 3 1 0 0 0 3 0 1 0 1 3 0 0 0 1

4 1 1 0 0 4 1 1 0 0 4 1 0 1 0 4 0 0 1 0

12 October 2021 Constraint Programming 10

Path-Consistency

- Secondly, constraint c14 between variables q1 and q4 is tightened through
variable q3, as shown below.

- Notice

• the use of the tightened constraint c13.

• The rows 1 and 4 are null in the new matrix M’13.

- This last result means that values 1 and 4 from variable q1 have no support on
variable q4 when the constraint c14 is tightened through variable q3.

- Hence, values 1 and 4 can safely be removed from the domain of variable q1

1\3 1 2 3 4 3\4 1 2 3 4 1\4 1 2 3 4 1\4 1 2 3 4

1 0 1 0 0 1 0 0 1 1 1 0 1 1 0 1 0 0 0 0

2 1 0 0 0 2 0 0 0 1 2 1 0 1 1 2 0 0 1 1

3 0 0 0 1 3 1 0 0 0 3 1 1 0 1 3 1 1 0 0

4 0 0 1 0 4 1 1 0 0 4 0 1 1 0 4 0 0 0 0

12 October 2021 Constraint Programming 11

Path-Consistency

- The same applies when constraint c12, is tightened through variable q4.

- But first, the rows corresponding to values 1 and 4 of variable q1 are set to
zero, since these values were removed from the value of the variable.

- The tightened constraint M14, leads to the removal of values 2 and 3 from the
domain of q2, since both columns 2 and 3 become null.

1\4 1 2 3 4 4\2 1 2 3 4 1\2 1 2 3 4 1\2 1 2 3 4

1 0 0 0 0 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0

2 0 0 1 1 2 1 0 1 0 2 0 0 0 1 2 0 0 0 1

3 1 1 0 0 3 0 1 0 1 3 1 0 0 0 3 1 0 0 0

4 0 0 0 0 4 1 0 1 0 4 1 1 0 0 4 0 0 0 0

1\4 1 2 3 4 1\4 1 2 3 4

1 0 1 1 0 1 0 0 0 0

2 0 0 1 1 2 0 0 1 1

3 1 1 0 0 3 1 1 0 0

4 0 1 1 0 4 0 0 0 0

®

12 October 2021 Constraint Programming 12

Path-Consistency

- The process is repeated with the tightening of constraint c13, through q2.

- Since values 1 and 4 were removed from the domain of variable q1 and so did
values 2 and 3 from variable q2, the corresponding rows and values are zero-
es in matrix M12 as explained before.

• And so do from matrix M23.

- Columns 2 and 3 are now made null the removal of these values from the
domain of the corresponding variables in the new matrix, leading to the
removal of 2 and 3 from the domain of q3.

1\2 1 2 3 4 1\2 1 2 3 4

1 0 0 1 1 1 0 0 0 0

2 0 0 0 1 2 0 0 0 1

3 1 0 0 0 3 1 0 0 0

4 1 1 0 0 4 0 0 0 0

®

1\2 1 2 3 4 2\3 1 2 3 4 1\3 1 2 3 4 1\3 1 2 3 4

1 0 0 0 0 1 0 0 1 1 1 0 0 0 0 1 0 0 0 0

2 0 0 0 1 2 0 0 0 0 2 1 0 0 0 2 1 0 0 0

3 1 0 0 0 3 0 0 0 0 3 0 0 1 1 3 0 0 0 1

4 0 0 0 0 4 1 1 0 0 4 0 0 0 0 4 0 0 0 0

12 October 2021 Constraint Programming 13

Path-Consistency

- Finally, the process is repeated with constraints involving variable q4, leading
to the removal of values 1 and 4 from the domain of q4.

- At this point, the remaining values in variables q1 to q4 all belong to one of the
two solutions of the 4-queens problem.

- Labelling of the variables can thus find a solution with no backtracking at all.

12 October 2021 Constraint Programming 14

Binary Constraints: i-consistency

- The notions of node-, arc- and path-consistency can be generalised further to
i-consistency, with increasing demands of consistency.

0 0¹

0,1 0,1
¹

0,1
¹ ¹

0..2 0..2
¹

0..2

¹ ¹

0..2

¹
¹

¹

- A node consistent network, that is not arc
consistent (i.e. 2-consistent).

- An arc consistent network, that is not path
consistent (i.e. 3-consistent)

- A path-consistent network, which is not …
4-consistent

12 October 2021 Constraint Programming 15

Binary Constraints: i-consistency

- The criterion of i-consistency is thus defined as follows.

Definition (i-Consistency):

• A constraint satisfaction problem is i-consistent if,

§ all compound labels of cardinality i-1 can be extended to any other ith

variable.

- For example, any compound label < x1-v1, x2-v2, ..., xk-vk>, in a i-consistent
constraint network (k = i-1), that satisfies the constraints over variables of the set
S = {x1, x2, ..., xk} can be extended to any another variable xi, (Ï S) i.e. there
is a value vi in the domain of xi that satisfies all the constraints defined on the set
S’ = S È {xi} of variables.

- As a special case, when i=1, only the unary constraints must be satisfied.

12 October 2021 Constraint Programming 16

Binary Constraints: i-consistency

- Additionally, strong consistency can also be defined

Definition: i-Consistency

• A constraint satisfaction problem is strongly i-consistent if,

§ It is k-consistent for all k ≤ i.

- Given this definitions it is easy to notice the following equivalences:

Node-consistency « strong 1-consistency

Arc- consistency « strong 2-consistency

Path-consistency « strong 3-consistency

12 October 2021 Constraint Programming 17

Binary Constraints: i-consistency

- Notice that the analogies of node-, arc- and path- consistency were made with
respect to strong i-consistency.

- This is because a constraint network may be i-consistent but nonetheless not
to be m-consistent (for some m < i).

• For example, the network below is 3-consistent, but not 2-consistent. Hence
it is not strongly 3-consistent.

0 0

0,1
¹ ¹

b

ca

§ The only 2-compound labels, that satisfy the
constraints are

{a-0,b-1}, {a-0,c-0}, and {b-1, c-0}

§ They may be extended to the remaining variable

{a-0, b-1, c-0}

§ However, the 1-compound label {b-0} cannot be
extended neither to variable a (i.e. {a-0,a-0} ?)
nor c (i.e. {b-0, c-0} !

12 October 2021 Constraint Programming 18

Binary Constraints: i-consistency

- For i > 3, i-consistency cannot be implemented with binary constraints alone. In
fact:

• 2-consistency checks whether a 1-label {xi-vi} can be extended to some other
2-label {xi-vi, xj-vj}. If that is not the case, label {xi-vi} is removed from the
domain of Xi.

• 3-consistency checks whether a 2-label {xi-vi, xj-vj} can be extended to a 3-label
{xi-vi, xj-vj, xk-vk} . If that is not the case, label {xi-vi, xj-vj} is removed.

• Removing label {xi-vi, xj-vj} is not achieved by removing values from the
domains of the variables, but rather by tightening a constraint cij on variables xi
and xj.

- By analogy, to impose 4-consistency 3-labels may have to be removed, hence a
constraint on 3 variables has to be created or tightened.

- In general, maintaining i-consistency requires imposing constraints of arity i-1.

12 October 2021 Constraint Programming 19

Binary Constraints: i-consistency

- The algorithms that were presented for achieving arc-consistency could be
adapted to obtain i-consistency, provided that we consider constraints with arity
i-1.

- The adaptation of the AC-1 algorithm (brute-force) would have

• Space complexity of O(2i (nd)2i).

• Time complexity of O(nidi).

- The adaptation of the AC-4 and AC-6 algorithms lead to optimal asymptotic time
complexity of W (nidi) (a lower bound).

- Given the mentioned complexity (even if the typical cases are not so bad) their
use in backtrack search is generally not considered.

- The main application of these criteria is in cases where tractability can be
proved based on these criteria.

12 October 2021 Constraint Programming 20

Complexity of Search

- Qualitatively, this process may be represented by means of the following picture

C
om

pu
ta

tio
na

l C
os

t

R - Reduction Cost

S- Search Cost

R+S
Combined Cost

Effort spent in solving the problem

Amount of Reduction Achieved

12 October 2021 Constraint Programming 21

Network Consistency and Satisfiability

- All types of i-consistency can be imposed by polynomial algorithms, with
asymptotic time complexity W(nidi) even when the corresponding problems
(modelled with binary constraints) are NP-complete.

- Hence, in general for a network with n variables, i-consistency (for any i < n)
does not imply satisfiability of the problem, i.e.

• There are unsatisfiable problems (modelled with binary constraints) whose
corresponding network is i-consistent.

- Of course, the converse is also true

• There are satisfiable problems, modelled with binary constraints, whose
corresponding network is not i-consistent.

- Nevertheless, in some special cases, the two concepts (i-consistency and
satisfiability are equivalent).

- We will overview three such cases.

12 October 2021 Constraint Programming 22

Network Consistency and Satisfiability

Case 1: A network of binary constraints, whose variables have only 2 values in their
domain, is satisfiable iff it can be made path-consistent.

Proof: By recasting the problem to 2-SAT.

• If the network is path-consistent, then

1. all binary constraints are explicit, and

2. the matrices representing the constraints have a maximum of 2 rows and 2
columns.

• Hence, the satisfaction of a constraint can be equated to the satisfaction of a
Boolean formula in disjunctive normal form (see figure below for an example).

(a2 Ù b3) Ú (a2 Ù b4) Ú (a5 Ù b4)

a\b 3 4

2 1 1

5 0 1

12 October 2021 Constraint Programming 23

Network Consistency and Satisfiability

• But given that there are only two values in each domain we may make explicit that
one of the values corresponds to the negation of the other, as shown below

a2 = a

a5 = ¬a

b3 = b

b4 = ¬b

R = (a Ù b) Ú (a Ù ¬b) Ú (¬a Ù ¬b)

• Now, since path-consistency makes explicit all implicit relations between
variables, the corresponding path-consistent network will contain a 0-matrix if and
only if the corresponding problem is unsatisfiable.

• Since all the constraints are recast into a 2-SAT formula, solving them is tractable!

a\b 3 4

2 1 1

5 0 1

12 October 2021 Constraint Programming 24

Graph Width

- Before presenting another theorem relating k-consistency and tractability it is
convenient to consider constraint networks with n-ary constraints (n>2), either
because a problem is specified with such constraints, or because these
constraints are induced in a (binary) graph when k-consistency (k>3) is
imposed on the constraint network.

- For this purpose we have the following definition:

Definition: Primal Graph of a Constraint Network

• The primal graph of a constraint network is a graph where there is an edge
between two variables iff there is some constraint with the two variables in its
scope.

- Given the definition, the primal graph of a constraint satisfaction problem
coincides with the problem graph if the only constraints to be considered are
binary (or unary).

12 October 2021 Constraint Programming 25

Graph Width

Example:

- Let us assume that:

1. the initial formalisation of a problem
leads to the network P1;

2. imposing path-consistency, arcs are
added between variables, e.g. 2-3,
resulting in network P2 (still a graph);

3. Imposing 4-consistency, hyper-arcs are
imposed on variables 1-2-3, 1-2-5 and
1-3-6, resulting in network P3 (a hyper-
graph);

- Now, the primal graph of the problem is
shown as graph P4.

2 3

5 6

1

7

4 P1

2 3

5 6

1

7

4P4

2 3

5 6

1

7

4 P3

2 3

5 6

1

7

4P2

12 October 2021 Constraint Programming 26

Graph Width

Definition: Node width, given ordering O

• Given some total ordering, O, defined on the nodes of a graph, the width of a
node N given ordering O, is the number of lower order nodes that are
adjacent to N.

Example: For the graph and the ordering O1 shown we have
§ w(1, O1) = 0
§ w(2, O1) = 1 (node 1)
§ w(3, O1) = 2 (nodes 1 and 2)
§ w(4, O1) = 3 (nodes 1, 2 and 3)
§ w(5, O1) = 3 (nodes 1, 2 and 4)
§ w(6, O1) = 3 (nodes 1, 3 and 4)
§ w(7, O1) = 3 (nodes 4, 5 and 6)

2 3

5 6

1

7

4

12 October 2021 Constraint Programming 27

Graph Width

- Different orderings will produce different widths for the nodes of the graphs.

Example: For the same graph but with an “inverted ordering O2, we have

§ w(1, O2) = 0
§ w(2, O2) = 1 (node 1)
§ w(3, O2) = 1 (node 1)
§ w(4, O2) = 3 (nodes 1, 2 and 3)
§ w(5, O2) = 2 (nodes 2 and 4)
§ w(6, O2) = 2 (nodes 3 and 4)
§ w(7, O2) = 5 (nodes 2, 3, 4, 5 and 6)

6 5

3 2

7

1

4

12 October 2021 Constraint Programming 28

Graph Width

- From the width of the nodes one may obtain the width of a graph.

Definition: Graph width, given ordering O

Given some total ordering, O, defined on the nodes of a graph, the width
of the graph, given ordering O is the maximum width of its nodes, given
ordering O.

Example: For the two orderings we obtain

2 3

5 6

1

7

4
6 5

3 2

7

1

4

W(G,O1) = 3 W(G,O2) = 5

12 October 2021 Constraint Programming 29

Graph Width

- Now we may define the width of a graph, independent of the ordering used.

Definition: Graph width

• The width of a graph is the lowest width of the graph over all possible total
orderings.

- In the example, it is easy to see that the width of the graph is 3.

2 3

5 6

1

7

4

a) Ordering O1 assigns width 3 to the graph.
Hence the graph width is not greater than 3.

b) A width of 2 on a graph with 7 nodes would
require the graph to have at most 0+1+5*2 = 11
edges. Hence, the width of the graph, which
has 15 edges, cannot be less than 3.

c) From a) and b) the width of graph G is 3.

12 October 2021 Constraint Programming

Tractability and i-Consistency

- Now we can present a theorem relating k-consistency and the width of a
graph, which indirectly checks whether a problem is tractable.

Theorem: Graph width and Satisfiability

• Let a constraint satisfaction problem be modelled by a constraint network,
that after imposing k-consistency leads to a primal graph of width k-1. Under
these conditions, any ordering that assigns width k to the primal graph is a
backtrack free ordering (BTF).

Example:

• For the networks bellow, assumed to be path-consistent (strong 3-consistent)
O1 and O2 (with widths 2) are BTF orderings, but O3 (width 3) is not.

1

2

4

3

5

6

8

7

7

8

6

5

3

4

1

2

1

5

2

4

3

6

7

8

30

12 October 2021 Constraint Programming

Tractability and i-Consistency

- In fact, for ordering O1

1. every label {x1-v1, x2-v2}, has a support in x3,
say {x3-v3}.

2. But, label {x1-v1, x3-v3}, has a support in x4,
say {x4-v4}.

3. Now, label {x3-v3, x4-v4}, has a support in x5,
say {x5-v5}.

4. Then, label {x3-v3, x5-v5}, has a support in x6,
say {x6-v6}.

5. And, label {x5-v5, x6-v6}, has a support in x7,
say {x7-v7}.

6. Finally, label {x5-v5, x7-v7}, has a support in x8,
say {x8-v8}.

31

1

2

4

3

5

6

8

7

• All things considered, label {x1-v1, x2-v2, x3-v3, x4-v4, x5-v5, x6-v6, x7-v7,x8-v8} is a
solution of the problem, and was found with no backtracking

12 October 2021 Constraint Programming

Tractability and i-Consistency

- However, for ordering O3

§ every label {x1-v1, x2-v2}, has a support in x4,
say {x4-u4}.

§ every label {x2-v2, x3-v3}, has a support in x4,
say {x4-v4}.

1

5

2

4

3

6

7

8

- But there is no guarantee that v4 and u4 are the same!

- In fact, there might be no value in the domain of x4 that supports both the
assignments {x1-v1, x2-v2}, and {x2-v2, x3-v3}.

- If this is the case, after assigning values {x1-v1, x2-v2, x3-v3}, no value exists for x4
that is compatible with these and one of them must be backtracked !!!

- In this example, the same would happen with variable x8 (connected to “prior”
variables x3, x6 and x7).

32

Graph Width

- To take advantage of the relation between i-consistency and induced graph
width, it is still necessary to find the width of a graph or, equivalently, one optimal
ordering, i.e. one that induces a minimal width.

- Fortunately there is a greedy algorithm (thus polynomial) that finds all optimal
orderings. The idea is very simple. Always select (non-deterministically) a node
with the least number of adjacent nodes (less degree). Put it in the back of the
ordering, delete all the arcs leading to the node, and proceed recursively.

function min-width(G: set of Nodes, A: set of Arcs):
Sequence of Nodes;

if G.nodes = {n} then
L ¬ [n]

else
n <- argn min {degree(n,G,A)}
G1.arcs ¬ G.arcs \ {A: A = (_,n) Ú A = (n,_)
G1.nodes ¬ G.nodes\{N}
L ¬ min-width(G1) + [n]

end if
min-width ¬ L

end function

12 October 2021 33Constraint Programming

12 October 2021 Constraint Programming 34

Network Consistency and Satisfiability

- So, in addition to

Case 1: A network of binary constraints, whose variables have only 2 values in
their domain, is satisfiable iff it can be made path-consistent.

we have

Case 2: A network of constraints (of any arity), whose primal graph has width k is
satisfiable iff it is k+1-consistent.

1

2

4 5

3

6 7

Example:

§ 2-consistency (i.e. arc-consistency) of the
constraint network guarantees the
satisfaction of the associated constraint
problem, if all constraints are binary and the
constraint graph has the topology of a tree.

§ A BTF ordering proceeds from the root to
the leaves

12 October 2021 Constraint Programming 35

Network Consistency and Satisfiability

- The previous 2 cases can be regarded as special cases of CSP tractable
problems whose language or structure are restricted wrt to general binary CSPs.

Case 1 (Constraint Language Restriction): A network of binary constraints, whose
variables have only 2 values in their domain, is satisfiable iff it can be made path-
consistent.

Case 2 (Structural Restriction): A network of constraints (of any arity), whose
primal graph has width k, is satisfiable iff it is k+1-consistent.

- For the third case we present next, the Broken-Triangle Property (BTP) is a
polynomial-time detectable property which defines a novel hybrid tractable class
of binary CSP instances.

- The BTP can be viewed as forbidding the occurrence of certain sub-problems of a
fixed size within a CSP instance.

Definition: Broken-triangle property

• A binary CSP instance satisfies the broken-triangle property (BTP) with respect to
the variable ordering <, if, for all triples of variables i, j, k such that i < j < k, if
(u,v)∈Rij, (u,a)∈Rik and (v,b)∈Rjk, then either (u,b)∈Rik or (v,a) ∈ Rjk.

12 October 2021 Constraint Programming 36

Network Consistency and Satisfiability

a

b
u

v

i

j

k

c = (a or b)
u

v

i

j

k

=>

- To check the tractability of this class of problems we have the following *

Theorem: Detection of a BTP variable ordering

• Given a binary CSP instance I, there is a polynomial-time algorithm to find a
variable ordering <, such that I satisfies the broken-triangle property with
respect to < (or to determine that no such ordering exists).

- For the CSP instances that have the BTP with respect to some ordering there is
thus a polynomial-time procedure to determine a variable ordering which
guarantees backtrack-free search.

- Moreover,

* See details in Martin C. Cooper, Peter G. Jeavons, András Z. Salamon, Generalizing constraint satisfaction
on trees: Hybrid tractability and variable elimination, AI Journal, 174 (2010), pp. 570–584

12 October 2021 Constraint Programming 37

Network Consistency and Satisfiability

Theorem: Finding solution for a BTP instance

• For any binary CSP instance which satisfies the BTP with respect to some
known variable ordering <, it is possible to find a solution in O(d2e) time (or
determine that no solution exists).

- Hence a problem that presents the BTP property is tractable.

• Not only it is tractable finding the order of variables; but

• finding a solution in BTP orderings is also tractable.

* More details in Martin C. Cooper, Peter G. Jeavons, András Z. Salamon, Generalizing constraint satisfaction
on trees: Hybrid tractability and variable elimination, AI Journal, 174 (2010), pp. 570–584

12 October 2021 Constraint Programming 38

Network Consistency and Satisfiability

12 October 2021 Constraint Programming 39

Directed Arc-consistency

- Some constraints may take advantage of some special features to improve the
efficiency of their (arc-consistency) propagators.

- Take for example the case of a CSP with a tree-structure.

- Although arc-consistency requires support in
both directions of the edges of the graph,
support is only needed “downwards”, if the the
order in which variables are labelled is also
“downwards”.

- Hence, in these networks there is only the
need to maintain directed-arc consistency!

- Of course, this case can be generalised for networks of width k for which all that is
required is to maintain directed k-consistency to guarantee satisfiability.

1

2

4 5

3

6 7

12 October 2021 Constraint Programming 40

Singleton Arc-consistency

- As mentioned, path-consistency is usually too heavy. Nevertheless, there is a
variation of arc-consistency that is sometimes able to prune values from variables that
standard arc-consistency cannot. An example can illustrate this effect.

- If at some point in the search, some variable x is
chosen to be labelled, one may try to label it with
all its possible values, and apply arc-consistency
with no commitment (sometimes known as
“shaving”).

- If some value v of some other unlabelled variable y
is removed in all cases, than

- this value can safely be removed form the domain
of y, below the choice-point where variable x is
labelled.

x = a

y != v

x = b

y != v

x
Dx ={a,b}

x
v Ï Dy

12 October 2021 Constraint Programming 41

Arc-consistency: special purpose propagators

- Some constraints may take advantage of some special features to improve the
efficiency of their propagators.

- Take for example the propagator for the n-queens problem: no_attack(i, qi, j, qj).

- The usual arc-consistency would propagate the constraint (i.e. prune each of the
values in the domain of q1/q2 with no supporting value in q2/q1), whenever the
constraint is taken from the queue (assuming an AC-3 type algorithm).

- However, it is easy to see that a queen with 4 values in the domain offers at least
one support value to any other queen.

- In fact a queen qi can only be attacked by 3 positions of a queen qj from another
row j. Hence the 4th queen in row j will not attack it.

- Hence, the propagator for no_attack should first check the cardinality of the
domains, and only check for supports for queens that have a domain with
cardinality of 3 or less!

12 October 2021 Constraint Programming 42

Non-Binary Constraints: Bounds-consistency

- In numerical constraints (equality and inequality constraints) it is very usual not
to impose a too demanding arc-consistency, but rather to impose mere bounds
consistency.

- Take for example the simple constraint a < b over variables a and b with
domains 0..1000.

- In such inequality constraints, the only values worth considering for removal are
related to the bounds of the domains of these variables.

- In particular, the above constraint can be compiled into

max(a) < max(b) and min(b) < min(a)

- In practice this means that the values that can be safely removed are

• all values of a above the maximum value of b;

• all values of b below the minimum value of a;

- These values can be easily removed from the domains of the variables.

12 October 2021 Constraint Programming 43

Non-Binary Constraints: Bounds-consistency

- It is interesting to note how this kind of consistency detects contradictions.

- Take the example of a < b and b < a, two clearly unsatisfiable constraints. If the
domains of a and b are the range 1..1000, it will take about 500 iterations to
detect contradiction

a:: 1 .. 1000, b:: 1 .. 1000 a < b ® a:: 1 .. 999, b:: 2 .. 1000

a:: 1 .. 999, b:: 2 .. 1000 a > b ® a:: 3 .. 999, b:: 2 .. 998

a:: 3 .. 999, b:: 2 .. 998 a < b ® a:: 3 .. 997, b:: 4 .. 998

a:: 3 .. 997, b:: 4 .. 998 a > b ® a:: 5 .. 997, b:: 4 .. 996

....

a:: 499..501, b:: 498..500 a < b ® a::499..499, b::500..500

a:: 500..500, b:: 500..500 a > b ® a::501..500, b::500..499

- Now, the lower bound is greater than the upper bound of the variables domains,
which indicates contradiction!

12 October 2021 Constraint Programming 44

Non-Binary Constraints: Bounds-consistency

- This reasoning can be extended to more complex numerical constraints
involving numerical expressions:

Example:

a + b £ c

• The usual compilation of this constraint is

max(a) £ max(c) – min(b) to prune high values of a

max(b) £ max(c) – min(a) to prune high values of b

min(c) ³ min(a) + min(b) to prune high values of a

- Many numerical relations envolving more than two variables can be compiled
this way, so that the corresponding propagators achieve bounds consistency.

- This is particularly useful when the domains are encoded not as lists of
elements but as pairs min .. max as is usually the case for numerical variables.

12 October 2021 Constraint Programming 45

Enforcing generalised arc-consistency: GAC-3

- All algorithms for achieving arc-consistency can be adapted to achieve
generalised arc-consistency (or domain-consistency) by using a modified
version of the revise_dom predicate, that for every k-ary constraint checks
support values from each variable in the remaining k-1 variables.

predicate revise_gac(V,D, c Î C): set of labels;
R <- Æ;
for xi in vars(c)

for vi in dom(Xi) do
Y = vars(c) \ {xi} ;
if ¬ $ V in dom(Y): satisfies({xi-vi, Y-V}, c) then

dom(Xi) <- dom(xi) \ {vi};
R <- R È {xi-i};

end if
end for
revise_gac <- R;

end predicate

12 October 2021 Constraint Programming 46

Enforcing generalised arc-consistency: GAC-3

- The GAC-3 algorithm is presented below, as an adaptation of AC-3.

- Any time a value is removed from a variable Xi, all constraints that have this
variable in the scope are placed back in the queue for assessing their local
consistency.

procedure AC-3(V, D, C);
NC-1(V,D,C); % node consistency
Q = { c | c Î C};
while Q ¹ Æ do

Q = Q \ {c} % removes an element from Q
for xi-i in revise_gac(V,D, c Î C) do % revised xi

Q = Q È {r | r Î C Ù i Î vars(r) Ù r ¹ c }
end if

end while
end procedure

12 October 2021 Constraint Programming 47

Complexity of GAC-3

Time Complexity of GAC-3: O(a k2 dk+1)

• Every time that an hyper-arc/n-ary constraint is removed from the queue Q,
predicate revise_gac is called, to check at most k*dk tuples of values.

• In the worst case, each of the a constraints is placed into the queue at most k*d
times.

• All things considered, the worst case time complexity of GAC-3, is

O(a k2 dk+1)

• Of course, when all the constraint are binary the complexity of GAC-3 is the
same of AC-3, i.e.

O(a d3)

12 October 2021 Constraint Programming 48

Constraint Propagation

- Generalised arc-consistency provides a scheme for an architecture of
constraint solvers, even when constraints are not binary.

- For every constraint (binary or n-ary) a number of propagators are considered.
In general, each propagator:

• affects one variable (aiming at narrowing its domain, when invoked);

• is triggered by some events, namely some change in the domain of some
variable;

- For example, the posting of the constraint c :: x + y = z creates 3 propagators

Px: x ß y – z ; Py: y ß z – x ; Pz: z ß x + y

- Propagator Px (likewise for propagators Py and Pz) is triggered by some
change in the domain of variables y or z.

- When executed it (possibly) narrows the domain of x. If this becomes empty, a
failure is detected and backtracks is enforced.

12 October 2021 Constraint Programming 49

Constraint Propagation
- The life cycle of such propagators can be schematically represented as

follows:

1. Propagators are created when the corresponding constraint is posted.
They are enqueued and become ready for execution.

2. When they reach the front of the queue they are executed. Upon execution
the domain of the propagator variable is possibly narrowed.

3. If the domain is empty, backtracking occurs, and after trailing, the
propagator is put back in the queue.

4. Otherwise, the propagator stays waiting for a triggering event.

5. When one such event occurs the propagator is enqueued. While
enqueued, other triggering events are possibly “merged” in the queue.

Wait

4. success

3. backtrack
Execute

2. dequeue1. post

Queue
5. triggered

12 October 2021 Constraint Programming 50

Constraint Propagation

Px: x ß y – z ; Py: y ß z – x ; Pz: z ß x + y

- Propagators aim at maintaining some form of consistency, typically domain
consistency or bounds consistency, This has a direct influence on the events
that trigger them.

- For example, with bounds consistency, propagator Px is triggered when the
maximum or minimum values in the domain of variables y and z is changed.
These are the only events that change the maximum and minimum values of
the domain of variable x.

- In contrast, if domain consistency is maintained, propagator Px is triggered
whenever any value is removed from the domain of any of the variables y or z,
since these removals may end the support of some value in the domain of x.

- This also means that sometimes the activation of the propagator does not lead
to the removal of any value in the domain. For example value 3 in x may be
supported by either values 5 and 2, or by values 7 and 4 for variables y and z.
If 7 is removed from the domain of y, x= 3 still has support in y and z.

12 October 2021 Constraint Programming 51

Generalised arc-consistency: Global Constraints

- The time complexity of generalised arc consistency for n-ary constraints may be
too costly. Consider the case of n variables that all have to take different values.

x1 ≠ x2, x1 ≠ x3 ... x1 ≠ xn ... xn-1 ≠ xn

- These n(n-1)/2 binary constraints can be replaced by a single n-ary constraint

all_different(x1 , x2, x3 , .. , xn)

- However, checking the consistency of such constraint by the naïve method
presented, would have complexity O(a n2 dn+1) , i.e. O(n4 dn+1).

- This is why, some very widely used n-ary constraints are dealt with as global
constraints, for which special purpose, and much faster, algorithms exist to check
the constraint consistency.

- In the all_different constraint, an algorithm based in graph theory enforces this
checking with complexity O(d n3/2), much better than the naïve version.

- For example for d » n » 9 (sudoku sized problem!) the number of checks is
reduced from 92*910 » 3*1010 to a much more acceptable number of 9* 93/2 » 243.

