
OVERVIEW PACKAGE CLASS USE TREE DEPRECATED INDEX HELP

PREV CLASS NEXT CLASS FRAMES NO FRAMES ALL CLASSES

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

org.chocosolver.solver.constraints

Interface IIntConstraintFactory

All Superinterfaces:

ISelf<Model>

All Known Subinterfaces:

IConstraintFactory, IModel

All Known Implementing Classes:

Model

public interface IIntConstraintFactory
extends ISelf<Model>

Interface to make constraints over BoolVar and IntVar A kind of factory relying on interface
default implementation to allow (multiple) inheritance

Since:

4.0.0

Author:

Jean-Guillaume FAGES, Charles Prud'homme

Method Summary

Modifier and Type Method and Description

default Constraint absolute(IntVar var1, IntVar var2)

Creates an absolute value constraint: var1 = |var2|

default Constraint allDifferent(IntVar... vars)

Creates an allDifferent constraint.

default Constraint allDifferent(IntVar[] vars,
String CONSISTENCY)

Creates an allDifferent constraint.

default Constraint allDifferentExcept0(IntVar[] vars)

All Methods Instance Methods Default Methods

http://www.choco-solver.org/apidocs/overview-summary.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/package-summary.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/class-use/IIntConstraintFactory.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/package-tree.html
http://www.choco-solver.org/apidocs/deprecated-list.html
http://www.choco-solver.org/apidocs/index-all.html
http://www.choco-solver.org/apidocs/help-doc.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/IDecompositionFactory.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/IRealConstraintFactory.html
http://www.choco-solver.org/apidocs/index.html?org/chocosolver/solver/constraints/IIntConstraintFactory.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/IIntConstraintFactory.html
http://www.choco-solver.org/apidocs/allclasses-noframe.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/ISelf.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/Model.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/IConstraintFactory.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/IModel.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/Model.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/ISelf.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/Model.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html?is-external=true
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
javascript:show(2);
javascript:show(16);

Creates an allDifferent constraint for variables that are not
equal to 0.

default Constraint allDifferentUnderCondition(IntVar[] vars,
Condition condition, boolean singleCondition)

Creates an allDifferent constraint subject to the given
condition.

default Constraint allEqual(IntVar... vars)

Creates an allEqual constraint.

default Constraint among(IntVar nbVar, IntVar[] vars,
int[] values)

Creates an among constraint.

default Constraint and(BoolVar... bools)

Creates an and constraint that is satisfied if all boolean
variables in bools are true

default Constraint and(Constraint... cstrs)

Creates an and constraint that is satisfied if all constraints
in cstrs are satisfied BEWARE: this should not be used to
post several constraints at once but in a reification context

default Constraint arithm(IntVar var, String op, int cste)

Creates an arithmetic constraint : var op cste, where op in
{"=", "!

default Constraint arithm(IntVar var1, String op, IntVar var2)

Creates an arithmetic constraint: var1 op var2, where op in
{"=", "!

default Constraint arithm(IntVar var1, String op1, IntVar var2,
String op2, int cste)

Creates an arithmetic constraint : var1 op var2, where op in
{"=", "!

default Constraint arithm(IntVar var1, String op1, IntVar var2,
String op2, IntVar var3)

Creates an arithmetic constraint: var1 op1 var2 op2 var3,
where op1 and op2 in {"=", "!

default Constraint atLeastNValues(IntVar[] vars, IntVar nValues,
boolean AC)

Creates an atLeastNValue constraint.

default Constraint atMostNValues(IntVar[] vars, IntVar nValues,
boolean STRONG)

Creates an atMostNValue constraint.

http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/nary/alldifferent/conditions/Condition.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/BoolVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html?is-external=true
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html?is-external=true
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html?is-external=true
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html?is-external=true
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html?is-external=true
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html?is-external=true
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html

default Constraint binPacking(IntVar[] itemBin, int[] itemSize,
IntVar[] binLoad, int offset)

Creates a BinPacking constraint.

default Constraint bitsIntChanneling(BoolVar[] bits, IntVar var)

Creates an channeling constraint between an integer
variable and a set of bit variables.

default Constraint boolsIntChanneling(BoolVar[] bVars,
IntVar var, int offset)

Creates an channeling constraint between an integer
variable and a set of boolean variables.

default Constraint circuit(IntVar[] vars)

Creates a circuit constraint which ensures that

the elements of vars define a covering circuit

where vars[i] = offset+j means that j is the successor of i.

default Constraint circuit(IntVar[] vars, int offset)

Creates a circuit constraint which ensures that

the elements of vars define a covering circuit

where vars[i] = offset+j means that j is the successor of i.

default Constraint circuit(IntVar[] vars, int offset,
CircuitConf conf)

Creates a circuit constraint which ensures that

the elements of vars define a covering circuit

where vars[i] = offset+j means that j is the successor of i.

default Constraint clausesIntChanneling(IntVar var,
BoolVar[] eVars, BoolVar[] lVars)

Creates an channeling constraint between an integer
variable and a set of clauses.

default Constraint costRegular(IntVar[] vars, IntVar cost,
ICostAutomaton costAutomaton)

Creates a regular constraint that supports a cost function.

default Constraint count(int value, IntVar[] vars, IntVar limit)

Creates a count constraint.

default Constraint

http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/BoolVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/BoolVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/nary/circuit/CircuitConf.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/BoolVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/BoolVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/nary/automata/FA/ICostAutomaton.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html

count(IntVar value, IntVar[] vars,
IntVar limit)

Creates a count constraint.

default void cumulative(IntVar[] starts, int[] durations,
int[] heights, int capacity)

Creates and posts a decomposition of a cumulative
constraint: Enforces that at each point in time, the
cumulated height of the set of tasks that overlap that point
does not exceed a given limit.

default Constraint cumulative(Task[] tasks, IntVar[] heights,
IntVar capacity)

Creates a cumulative constraint: Enforces that at each point
in time, the cumulated height of the set of tasks that overlap
that point does not exceed a given limit.

default Constraint cumulative(Task[] tasks, IntVar[] heights,
IntVar capacity, boolean incremental)

Creates a cumulative constraint: Enforces that at each point
in time, the cumulated height of the set of tasks that overlap
that point does not exceed a given limit.

default Constraint cumulative(Task[] tasks, IntVar[] heights,
IntVar capacity, boolean incremental,
Cumulative.Filter... filters)

Creates a cumulative constraint: Enforces that at each point
in time, the cumulated height of the set of tasks that overlap
that point does not exceed a given limit.

default Constraint cumulative(Task[] tasks, IntVar[] heights,
IntVar capacity, boolean incremental,
CumulFilter... filters)

Creates a cumulative constraint: Enforces that at each point
in time, the cumulated height of the set of tasks that overlap
that point does not exceed a given limit.

default Constraint diffN(IntVar[] X, IntVar[] Y, IntVar[] width,
IntVar[] height,
boolean addCumulativeReasoning)

Creates a diffN constraint.

default Constraint distance(IntVar var1, IntVar var2, String op,
int cste)

Creates a distance constraint : |var1-var2| op cste
where op can take its value among {"=", ">", "<", "!

default Constraint distance(IntVar var1, IntVar var2, String op,
IntVar var3)

http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/Task.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/Task.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/Task.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/nary/cumulative/Cumulative.Filter.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/Task.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/nary/cumulative/CumulFilter.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html?is-external=true
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html?is-external=true
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html

Creates a distance constraint: |var1-var2| op var3
where op can take its value among {"=", ">", "<"}

default Constraint div(IntVar dividend, IntVar divisor,
IntVar result)

Creates an euclidean division constraint.

default Constraint element(IntVar value, int[] table,
IntVar index)

Creates an element constraint: value = table[index]

default Constraint element(IntVar value, int[] table,
IntVar index, int offset)

Creates an element constraint: value = table[index-offset]

default Constraint element(IntVar value, IntVar[] table,
IntVar index, int offset)

Creates a element constraint: value = table[index-offset]
where table is an array of variables.

default int[] getDomainUnion(IntVar... vars)

Get the list of values in the domains of vars

default Constraint globalCardinality(IntVar[] vars,
int[] values, IntVar[] occurrences,
boolean closed)

Creates a global cardinality constraint (GCC): Each value
values[i] should be taken by exactly occurrences[i] variables
of vars.

default Constraint intValuePrecedeChain(IntVar[] X, int[] V)

Creates an intValuePrecedeChain constraint.

default Constraint intValuePrecedeChain(IntVar[] X, int S,
int T)

Creates an intValuePrecedeChain constraint.

default Constraint inverseChanneling(IntVar[] vars1,
IntVar[] vars2)

Creates an inverse channeling between vars1 and vars2:
vars1[i] = j <=> vars2[j] = i Performs AC if domains are
enumerated.

default Constraint inverseChanneling(IntVar[] vars1,
IntVar[] vars2, int offset1, int offset2)

Creates an inverse channeling between vars1 and vars2:
vars1[i-offset2] = j <=> vars2[j-offset1] = i Performs AC if
domains are enumerated.

default Constraint keySort(IntVar[][] vars, IntVar[] PERMvars,

http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html

IntVar[][] SORTEDvars, int K)

Creates a keySort constraint which ensures that the
variables of SORTEDvars correspond to the variables of
vars according to a permutation stored in PERMvars
(optional, can be null).

default Constraint knapsack(IntVar[] occurrences,
IntVar weightSum, IntVar energySum,
int[] weight, int[] energy)

Creates a knapsack constraint.

default Constraint lexChainLess(IntVar[]... vars)

Creates a lexChainLess constraint.

default Constraint lexChainLessEq(IntVar[]... vars)

Creates a lexChainLessEq constraint.

default Constraint lexLess(IntVar[] vars1, IntVar[] vars2)

Creates a lexLess constraint.

default Constraint lexLessEq(IntVar[] vars1, IntVar[] vars2)

Creates a lexLessEq constraint.

default Constraint max(BoolVar max, BoolVar[] vars)

Creates a maximum constraint.

default Constraint max(IntVar max, IntVar[] vars)

Creates a maximum constraint.

default Constraint max(IntVar max, IntVar var1, IntVar var2)

Creates a maximum constraint : max = max(var1, var2)
(Bound Consistency)

default Constraint mddc(IntVar[] vars,
MultivaluedDecisionDiagram MDD)

Create a constraint where solutions (tuples) are encoded by
a multi-valued decision diagram.

default Constraint member(IntVar var, int[] table)

Creates a member constraint.

default Constraint member(IntVar var, int lb, int ub)

Creates a member constraint.

default Constraint member(IntVar var, IntIterableRangeSet set)

Creates a member constraint.

default Constraint min(BoolVar min, BoolVar[] vars)

Creates a minimum constraint.

http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/BoolVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/BoolVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/util/objects/graphs/MultivaluedDecisionDiagram.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/util/objects/setDataStructures/iterable/IntIterableRangeSet.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/BoolVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/BoolVar.html

default Constraint min(IntVar min, IntVar[] vars)

Creates a minimum constraint.

default Constraint min(IntVar min, IntVar var1, IntVar var2)

Creates a minimum constraint: min = min(var1, var2)
(Bound Consistency)

default Constraint mod(IntVar X, int mod, int res)

Creates a modulo constraint.

default Constraint mod(IntVar X, int mod, IntVar Y)

Creates a modulo constraint: X % a = Y

default Constraint mod(IntVar X, IntVar Y, IntVar Z)

Ensures X % Y = Z.

default Constraint multiCostRegular(IntVar[] vars,
IntVar[] costVars,
ICostAutomaton costAutomaton)

Creates a regular constraint that supports a multiple cost
function.

default Constraint multiCostRegular(IntVar[] vars,
IntVar[] costVars,
ICostAutomaton costAutomaton,
double precision)

Creates a regular constraint that supports a multiple cost
function.

default Constraint not(Constraint cstr)

Gets the opposite of a given constraint Works for any
constraint, including globals, but the associated
performances might be weak

default Constraint notAllEqual(IntVar... vars)

Creates a notAllEqual constraint.

default Constraint notMember(IntVar var, int[] table)

Creates a notMember constraint.

default Constraint notMember(IntVar var, int lb, int ub)

Creates a notMember constraint.

default Constraint notMember(IntVar var,
IntIterableRangeSet set)

Creates a notMember constraint.

default Constraint nValues(IntVar[] vars, IntVar nValues)

Creates an nValue constraint.

http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/nary/automata/FA/ICostAutomaton.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/nary/automata/FA/ICostAutomaton.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/util/objects/setDataStructures/iterable/IntIterableRangeSet.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html

default Constraint or(BoolVar... bools)

Creates an or constraint that is satisfied if at least one
boolean variables in bools is true

default Constraint or(Constraint... cstrs)

Creates an or constraint that is satisfied if at least one
constraint in cstrs are satisfied

default Constraint path(IntVar[] vars, IntVar start, IntVar end)

Creates a path constraint which ensures that

the elements of vars define a covering path from start to end

where vars[i] = j means that j is the successor of i.

default Constraint path(IntVar[] vars, IntVar start, IntVar end,
int offset)

Creates a path constraint which ensures that

the elements of vars define a covering path from start to end

where vars[i] = offset+j means that j is the successor of i.

default Constraint regular(IntVar[] vars, IAutomaton automaton)

Creates a regular constraint.

default Constraint scalar(IntVar[] vars, int[] coeffs,
String operator, int scalar)

Creates a scalar constraint which ensures that
Sum(vars[i]*coeffs[i]) operator scalar

default Constraint scalar(IntVar[] vars, int[] coeffs,
String operator, int scalar,
int minCardForDecomp)

Creates a scalar constraint which ensures that
Sum(vars[i]*coeffs[i]) operator scalar

default Constraint scalar(IntVar[] vars, int[] coeffs,
String operator, IntVar scalar)

Creates a scalar constraint which ensures that
Sum(vars[i]*coeffs[i]) operator scalar

default Constraint scalar(IntVar[] vars, int[] coeffs,
String operator, IntVar scalar,
int minCardForDecomp)

Creates a scalar constraint which ensures that
Sum(vars[i]*coeffs[i]) operator scalar

default Constraint sort(IntVar[] vars, IntVar[] sortedVars)

http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/BoolVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/nary/automata/FA/IAutomaton.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html?is-external=true
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html?is-external=true
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html?is-external=true
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html?is-external=true
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html

Creates a sort constraint which ensures that the variables of
sortedVars correspond to the variables of vars according to
a permutation.

default Constraint square(IntVar var1, IntVar var2)

Creates a square constraint: var1 = var2^2

default Constraint subCircuit(IntVar[] vars, int offset,
IntVar subCircuitLength)

Creates a subCircuit constraint which ensures that

the elements of vars define a single circuit of subcircuitSize
nodes where

vars[i] = offset+j means that j is the successor of i.

default Constraint subPath(IntVar[] vars, IntVar start,
IntVar end, int offset, IntVar SIZE)

Creates a subPath constraint which ensures that

the elements of vars define a path of SIZE vertices, leading
from start to end

where vars[i] = offset+j means that j is the successor of i.

default Constraint sum(BoolVar[] vars, String operator, int sum)

Creates a sum constraint.

default Constraint sum(BoolVar[] vars, String operator,
IntVar sum)

Creates a sum constraint.

default Constraint sum(BoolVar[] vars, String operator,
IntVar sum, int minCardForDecomp)

Creates a sum constraint.

default Constraint sum(IntVar[] vars, String operator, int sum)

Creates a sum constraint.

default Constraint sum(IntVar[] vars, String operator, int sum,
int minCardForDecomp)

Creates a sum constraint.

default Constraint sum(IntVar[] vars, String operator,
IntVar sum)

Creates a sum constraint.

default Constraint sum(IntVar[] vars, String operator,
IntVar sum, int minCardForDecomp)

http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/BoolVar.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html?is-external=true
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/BoolVar.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html?is-external=true
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/BoolVar.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html?is-external=true
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html?is-external=true
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html?is-external=true
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html?is-external=true
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html?is-external=true
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html

Creates a sum constraint.

default Constraint table(IntVar[] vars, Tuples tuples)

Creates a table constraint specifying that the sequence of
variables vars must belong to the list of tuples (or must
NOT belong in case of infeasible tuples) Default
configuration with GACSTR+ algorithm for feasible tuples
and GAC3rm otherwise

default Constraint table(IntVar[] vars, Tuples tuples,
String algo)

Creates a table constraint, with the specified algorithm
defined algo - CT+: Compact-Table algorithm (AC),
- GAC2001: Arc Consistency version 2001 for tuples,
- GAC2001+: Arc Consistency version 2001 for allowed
tuples,
- GAC3rm: Arc Consistency version AC3 rm for tuples,
- GAC3rm+ (default): Arc Consistency version 3rm for
allowed tuples,
- GACSTR+: Arc Consistency version STR for allowed
tuples,
- STR2+: Arc Consistency version STR2 for allowed tuples,
- FC: Forward Checking.

default Constraint table(IntVar var1, IntVar var2,
Tuples tuples)

Create a table constraint over a couple of variables var1 and
var2 Uses AC3rm algorithm by default

default Constraint table(IntVar var1, IntVar var2,
Tuples tuples, String algo)

Creates a table constraint over a couple of variables var1
and var2:
- AC2001: table constraint which applies the AC2001
algorithm,
- AC3: table constraint which applies the AC3 algorithm,
- AC3rm: table constraint which applies the AC3 rm
algorithm,
- AC3bit+rm (default): table constraint which applies the
AC3 bit+rm algorithm,
- FC: table constraint which applies forward checking
algorithm.

default Constraint times(IntVar X, int Y, IntVar Z)

Creates a multiplication constraint: X * Y = Z

default Constraint times(IntVar X, IntVar Y, int Z)

Creates a multiplication constraint: X * Y = Z

http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/extension/Tuples.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/extension/Tuples.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html?is-external=true
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/extension/Tuples.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/extension/Tuples.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html?is-external=true
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html

default Constraint times(IntVar X, IntVar Y, IntVar Z)

Creates a multiplication constraint: X * Y = Z

default Constraint tree(IntVar[] succs, IntVar nbTrees)

Creates a tree constraint.

default Constraint tree(IntVar[] succs, IntVar nbTrees,
int offset)

Creates a tree constraint.

Methods inherited from interface org.chocosolver.solver.ISelf

ref

Method Detail

arithm

default Constraint arithm(IntVar var,
 String op,
 int cste)

Creates an arithmetic constraint : var op cste, where op in {"=", "!=", ">","<",">=","
<="}

Parameters:

var - a variable

op - an operator

cste - a constant

member

default Constraint member(IntVar var,
 int[] table)

Creates a member constraint. Ensures var takes its values in table

Parameters:

var - an integer variable

table - an array of values

member

http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/ISelf.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/ISelf.html#ref--
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html?is-external=true
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html

default Constraint member(IntVar var,
 int lb,
 int ub)

Creates a member constraint. Ensures var takes its values in [LB, UB]

Parameters:

var - an integer variable

lb - the lower bound of the interval

ub - the upper bound of the interval

mod

default Constraint mod(IntVar X,
 int mod,
 int res)

Creates a modulo constraint. Ensures X % a = b

Parameters:

X - an integer variable

mod - the value of the modulo operand

res - the result of the modulo operation

not

default Constraint not(Constraint cstr)

Gets the opposite of a given constraint Works for any constraint, including globals, but
the associated performances might be weak

Parameters:

cstr - a constraint

Returns:

the opposite constraint of cstr

notMember

default Constraint notMember(IntVar var,
 int[] table)

Creates a notMember constraint. Ensures var does not take its values in table

http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html

Parameters:

var - an integer variable

table - an array of values

member

default Constraint member(IntVar var,
 IntIterableRangeSet set)

Creates a member constraint. Ensures var takes its values in set

Parameters:

var - an integer variable

set - a set of values

notMember

default Constraint notMember(IntVar var,
 int lb,
 int ub)

Creates a notMember constraint. Ensures var does not take its values in [lb, UB]

Parameters:

var - an integer variable

lb - the lower bound of the interval

ub - the upper bound of the interval

notMember

default Constraint notMember(IntVar var,
 IntIterableRangeSet set)

Creates a notMember constraint. Ensures var does not take its values in set

Parameters:

var - an integer variable

set - a set of values

absolute

http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/util/objects/setDataStructures/iterable/IntIterableRangeSet.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/util/objects/setDataStructures/iterable/IntIterableRangeSet.html

default Constraint absolute(IntVar var1,
 IntVar var2)

Creates an absolute value constraint: var1 = |var2|

arithm

default Constraint arithm(IntVar var1,
 String op,
 IntVar var2)

Creates an arithmetic constraint: var1 op var2, where op in {"=", "!=", ">","<",">=","
<="}

Parameters:

var1 - first variable

op - an operator

var2 - second variable

arithm

default Constraint arithm(IntVar var1,
 String op1,
 IntVar var2,
 String op2,
 int cste)

Creates an arithmetic constraint : var1 op var2, where op in {"=", "!=", ">","<",">=","
<="} or {"+", "-", "*", "/"}

Parameters:

var1 - first variable

op1 - an operator

var2 - second variable

op2 - another operator

cste - an operator

distance

default Constraint distance(IntVar var1,
 IntVar var2,
 String op,
 int cste)

http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html?is-external=true
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html?is-external=true
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html?is-external=true
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html?is-external=true

Creates a distance constraint : |var1-var2| op cste
where op can take its value among {"=", ">", "<", "!="}

element

default Constraint element(IntVar value,
 int[] table,
 IntVar index,
 int offset)

Creates an element constraint: value = table[index-offset]

Parameters:

value - an integer variable taking its value in table

table - an array of integer values

index - an integer variable representing the value of value in
table

offset - offset matching index.lb and table[0] (Generally 0)

element

default Constraint element(IntVar value,
 int[] table,
 IntVar index)

Creates an element constraint: value = table[index]

Parameters:

value - an integer variable taking its value in table

table - an array of integer values

index - an integer variable representing the value of value in
table

mod

default Constraint mod(IntVar X,
 int mod,
 IntVar Y)

Creates a modulo constraint: X % a = Y

Parameters:

X - first integer variable

http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html

mod - the value of the modulo operand

Y - second integer variable (result of the modulo operation)

square

default Constraint square(IntVar var1,
 IntVar var2)

Creates a square constraint: var1 = var2^2

table

default Constraint table(IntVar var1,
 IntVar var2,
 Tuples tuples)

Create a table constraint over a couple of variables var1 and var2 Uses AC3rm
algorithm by default

Parameters:

var1 - first variable

var2 - second variable

table

default Constraint table(IntVar var1,
 IntVar var2,
 Tuples tuples,
 String algo)

Creates a table constraint over a couple of variables var1 and var2:
- AC2001: table constraint which applies the AC2001 algorithm,
- AC3: table constraint which applies the AC3 algorithm,
- AC3rm: table constraint which applies the AC3 rm algorithm,
- AC3bit+rm (default): table constraint which applies the AC3 bit+rm algorithm,
- FC: table constraint which applies forward checking algorithm.

Parameters:

var1 - first variable

var2 - second variable

tuples - the relation between the two variables, among {"AC3",
"AC3rm", "AC3bit+rm", "AC2001", "FC"}

http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/extension/Tuples.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/extension/Tuples.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html?is-external=true

times

default Constraint times(IntVar X,
 int Y,
 IntVar Z)

Creates a multiplication constraint: X * Y = Z

Parameters:

X - first variable

Y - a constant

Z - result variable

times

default Constraint times(IntVar X,
 IntVar Y,
 int Z)

Creates a multiplication constraint: X * Y = Z

Parameters:

X - first variable

Y - second variable

Z - a constant (result)

arithm

default Constraint arithm(IntVar var1,
 String op1,
 IntVar var2,
 String op2,
 IntVar var3)

Creates an arithmetic constraint: var1 op1 var2 op2 var3, where op1 and op2 in {"=",
"!=", ">","<",">=","<="} or {"+", "-", "*", "/"}

Parameters:

var1 - first variable

op1 - an operator

var2 - second variable

op2 - another operator

http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html?is-external=true
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html?is-external=true
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html

var3 - third variable

distance

default Constraint distance(IntVar var1,
 IntVar var2,
 String op,
 IntVar var3)

Creates a distance constraint: |var1-var2| op var3
where op can take its value among {"=", ">", "<"}

Parameters:

var1 - first variable

var2 - second variable

op - an operator

var3 - resulting variable

div

default Constraint div(IntVar dividend,
 IntVar divisor,
 IntVar result)

Creates an euclidean division constraint. Ensures dividend / divisor = result, rounding
towards 0 Also ensures divisor != 0

Parameters:

dividend - dividend

divisor - divisor

result - result

max

default Constraint max(IntVar max,
 IntVar var1,
 IntVar var2)

Creates a maximum constraint : max = max(var1, var2) (Bound Consistency)

Parameters:

max - a variable

http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html?is-external=true
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html

var1 - a variable

var2 - a variable

min

default Constraint min(IntVar min,
 IntVar var1,
 IntVar var2)

Creates a minimum constraint: min = min(var1, var2) (Bound Consistency)

Parameters:

min - a variable

var1 - a variable

var2 - a variable

mod

default Constraint mod(IntVar X,
 IntVar Y,
 IntVar Z)

Ensures X % Y = Z.

Creates a modulo constraint, that uses truncated division: the quotient is defined by
truncation q = trunc(a/n) and the remainder would have same sign as the dividend.
The quotient is rounded towards zero: equal to the first integer in the direction of zero
from the exact rational quotient.

Parameters:

X - first variable

Y - second variable

Z - result

times

default Constraint times(IntVar X,
 IntVar Y,
 IntVar Z)

Creates a multiplication constraint: X * Y = Z

Parameters:

http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html

X - first variable

Y - second variable

Z - result variable

allDifferent

default Constraint allDifferent(IntVar... vars)

Creates an allDifferent constraint. Ensures that all variables from vars take a different
value. Uses BC plus a probabilistic AC propagator to get a compromise between BC
and AC

Parameters:

vars - list of variables

allDifferent

default Constraint allDifferent(IntVar[] vars,
 String CONSISTENCY)

Creates an allDifferent constraint. Ensures that all variables from vars take a different
value. The consistency level should be chosen among "BC", "AC" and "DEFAULT".

Parameters:

vars - list of variables

CONSISTENCY - consistency level, among {"BC", "AC"}

BC: Based on: "A Fast and Simple Algorithm for Bounds Consistency
of the AllDifferent Constraint"
A. Lopez-Ortiz, CG. Quimper, J. Tromp, P.van Beek
AC: Uses Regin algorithm Runs in O(m.n) worst case time for the
initial propagation and then in O(n+m) on average.

DEFAULT:
Uses BC plus a probabilistic AC propagator to get a compromise
between BC and AC

allDifferentUnderCondition

default Constraint allDifferentUnderCondition(IntVar[] vars,
 Condition condition,
 boolean singleCondition)

Creates an allDifferent constraint subject to the given condition. More precisely: IF

http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html?is-external=true
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/nary/alldifferent/conditions/Condition.html

singleCondition for all X,Y in vars, condition(X) => X != Y ELSE for all X,Y in
vars, condition(X) AND condition(Y) => X != Y

Parameters:

vars - collection of variables

condition - condition defining which variables should be
constrained

singleCondition - specifies how to apply filtering

allDifferentExcept0

default Constraint allDifferentExcept0(IntVar[] vars)

Creates an allDifferent constraint for variables that are not equal to 0. There can be
multiple variables equal to 0.

Parameters:

vars - collection of variables

allEqual

default Constraint allEqual(IntVar... vars)

Creates an allEqual constraint. Ensures that all variables from vars take the same
value.

Parameters:

vars - list of variables

notAllEqual

default Constraint notAllEqual(IntVar... vars)

Creates a notAllEqual constraint. Ensures that all variables from vars take more than a
single value.

Parameters:

vars - list of variables

among

default Constraint among(IntVar nbVar,
 IntVar[] vars,

http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html

 int[] values)

Creates an among constraint. nbVar is the number of variables of the collection vars
that take their value in values.
gccat among
Propagator : C. Bessiere, E. Hebrard, B. Hnich, Z. Kiziltan, T. Walsh, Among, common
and disjoint Constraints CP-2005

Parameters:

nbVar - a variable

vars - vector of variables

values - set of values

and

default Constraint and(BoolVar... bools)

Creates an and constraint that is satisfied if all boolean variables in bools are true

Parameters:

bools - an array of boolean variable

Returns:

a constraint and ensuring that variables in bools are all set to
true

and

default Constraint and(Constraint... cstrs)

Creates an and constraint that is satisfied if all constraints in cstrs are satisfied
BEWARE: this should not be used to post several constraints at once but in a
reification context

Parameters:

cstrs - an array of constraints

Returns:

a constraint and ensuring that all constraints in cstrs are
satisfied

atLeastNValues

default Constraint atLeastNValues(IntVar[] vars,
 IntVar nValues,

http://www.emn.fr/x-info/sdemasse/gccat/Camong.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/BoolVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html

 boolean AC)

Creates an atLeastNValue constraint. Let N be the number of distinct values assigned
to the variables of the vars collection. Enforce condition N >= nValues to hold.

This embeds a light propagator by default. Additional filtering algorithms can be
added.

Parameters:

vars - collection of variables

nValues - limit variable

AC - additional filtering algorithm, domain filtering algorithm
derivated from (Soft)AllDifferent

atMostNValues

default Constraint atMostNValues(IntVar[] vars,
 IntVar nValues,
 boolean STRONG)

Creates an atMostNValue constraint. Let N be the number of distinct values assigned
to the variables of the vars collection. Enforce condition N <= nValues to hold.

This embeds a light propagator by default. Additional filtering algorithms can be
added.

Parameters:

vars - collection of variables

nValues - limit variable

STRONG - "AMNV" Filters the conjunction of AtMostNValue and
disequalities (see Fages and Lapègue Artificial Intelligence
2014) automatically detects disequalities and allDifferent
constraints. Presumably useful when nValues must be minimized.

binPacking

default Constraint binPacking(IntVar[] itemBin,
 int[] itemSize,
 IntVar[] binLoad,
 int offset)

Creates a BinPacking constraint. Bin Packing formulation: forall b in
[0,binLoad.length-1], binLoad[b]=sum(itemSize[i] | i in [0,itemSize.length-1],
itemBin[i] = b+offset forall i in [0,itemSize.length-1], itemBin is in
[offset,binLoad.length-1+offset],

http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html

Parameters:

itemBin - IntVar representing the bin of each item

itemSize - int representing the size of each item

binLoad - IntVar representing the load of each bin (i.e. the sum
of the size of the items in it)

offset - 0 by default but typically 1 if used within MiniZinc
(which counts from 1 to n instead of from 0 to n-1)

boolsIntChanneling

default Constraint boolsIntChanneling(BoolVar[] bVars,
 IntVar var,
 int offset)

Creates an channeling constraint between an integer variable and a set of boolean
variables. Maps the boolean assignments variables bVars with the standard
assignment variable var.
var = i <-> bVars[i-offset] = 1

Parameters:

bVars - array of boolean variables

var - observed variable. Should presumably have an enumerated
domain

offset - 0 by default but typically 1 if used within MiniZinc
(which counts from 1 to n instead of from 0 to n-1)

bitsIntChanneling

default Constraint bitsIntChanneling(BoolVar[] bits,
 IntVar var)

Creates an channeling constraint between an integer variable and a set of bit variables.
Ensures that var = 20*BIT_1 + 21*BIT_2 + ... 2n-1*BIT_n.
BIT_1 is related to the first bit of OCTET (2^0), BIT_2 is related to the first bit of
OCTET (2^1), etc.
The upper bound of var is given by 2n, where n is the size of the array bits.

Parameters:

bits - the array of bits

var - the numeric value

clausesIntChanneling

http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/BoolVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/BoolVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html

default Constraint clausesIntChanneling(IntVar var,
 BoolVar[] eVars,
 BoolVar[] lVars)

Creates an channeling constraint between an integer variable and a set of clauses. Link
each value from the domain of var to two boolean variable: one reifies the equality to
the i^th value of the variable domain, the other reifies the less-or-equality to the i^th
value of the variable domain. Contract: eVars.lenght == lVars.length == var.getUB() -
var.getLB() + 1 Contract: var is not a boolean variable

Parameters:

var - an Integer variable

eVars - array of EQ boolean variables

lVars - array of LQ boolean variables

circuit

default Constraint circuit(IntVar[] vars)

Creates a circuit constraint which ensures that

the elements of vars define a covering circuit

where vars[i] = offset+j means that j is the successor of i.

Filtering algorithms:

subtour elimination : Caseau & Laburthe (ICLP'97)

allDifferent GAC algorithm: Régin (AAAI'94)

dominator-based filtering: Fages & Lorca (CP'11)

Strongly Connected Components based filtering (Cambazar & Bourreau JFPC'06 and
Fages and Lorca TechReport'12)

Parameters:

vars - vector of variables which take their value in
[offset,offset+|vars|-1]

Returns:

a circuit constraint

circuit

default Constraint circuit(IntVar[] vars,

http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/BoolVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/BoolVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html

 int offset)

Creates a circuit constraint which ensures that

the elements of vars define a covering circuit

where vars[i] = offset+j means that j is the successor of i.

Filtering algorithms:

subtour elimination : Caseau & Laburthe (ICLP'97)

allDifferent GAC algorithm: Régin (AAAI'94)

dominator-based filtering: Fages & Lorca (CP'11)

Strongly Connected Components based filtering (Cambazar & Bourreau JFPC'06 and
Fages and Lorca TechReport'12)

Parameters:

vars - vector of variables which take their value in
[offset,offset+|vars|-1]

offset - 0 by default but typically 1 if used within MiniZinc
(which counts from 1 to n instead of from 0 to n-1)

Returns:

a circuit constraint

circuit

default Constraint circuit(IntVar[] vars,
 int offset,
 CircuitConf conf)

Creates a circuit constraint which ensures that

the elements of vars define a covering circuit

where vars[i] = offset+j means that j is the successor of i.

Filtering algorithms:

subtour elimination : Caseau & Laburthe (ICLP'97)

allDifferent GAC algorithm: Régin (AAAI'94)

dominator-based filtering: Fages & Lorca (CP'11)

Strongly Connected Components based filtering (Cambazard & Bourreau JFPC'06 and
Fages and Lorca TechReport'12)

http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/nary/circuit/CircuitConf.html

See Fages PhD Thesis (2014) for more information

Parameters:

vars - vector of variables which take their value in
[offset,offset+|vars|-1]

offset - 0 by default but typically 1 if used within MiniZinc
(which counts from 1 to n instead of from 0 to n-1)

conf - filtering options

Returns:

a circuit constraint

costRegular

default Constraint costRegular(IntVar[] vars,
 IntVar cost,
 ICostAutomaton costAutomaton)

Creates a regular constraint that supports a cost function. Ensures that the assignment
of a sequence of variables is recognized by costAutomaton, a deterministic finite
automaton, and that the sum of the costs associated to each assignment is bounded by
the cost variable. This version allows to specify different costs according to the
automaton state at which the assignment occurs (i.e. the transition starts)

Parameters:

vars - sequence of variables

cost - cost variable

costAutomaton - a deterministic finite automaton defining the
regular language and the costs Can be built with method
CostAutomaton.makeSingleResource(...)

count

default Constraint count(int value,
 IntVar[] vars,
 IntVar limit)

Creates a count constraint. Let N be the number of variables of the vars collection
assigned to value value; Enforce condition N = limit to hold.

Parameters:

value - an int

vars - a vector of variables

limit - a variable

http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/nary/automata/FA/ICostAutomaton.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html

count

default Constraint count(IntVar value,
 IntVar[] vars,
 IntVar limit)

Creates a count constraint. Let N be the number of variables of the vars collection
assigned to value value; Enforce condition N = limit to hold.

Parameters:

value - a variable

vars - a vector of variables

limit - a variable

cumulative

default Constraint cumulative(Task[] tasks,
 IntVar[] heights,
 IntVar capacity)

Creates a cumulative constraint: Enforces that at each point in time, the cumulated
height of the set of tasks that overlap that point does not exceed a given limit. Task
duration and height should be >= 0 Discards tasks whose duration or height is equal to
zero

Parameters:

tasks - Task objects containing start, duration and end variables

heights - integer variables representing the resource consumption
of each task

capacity - integer variable representing the resource capacity

Returns:

a cumulative constraint

cumulative

default Constraint cumulative(Task[] tasks,
 IntVar[] heights,
 IntVar capacity,
 boolean incremental)

Creates a cumulative constraint: Enforces that at each point in time, the cumulated

http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/Task.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/Task.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html

height of the set of tasks that overlap that point does not exceed a given limit. Task
duration and height should be >= 0 Discards tasks whose duration or height is equal to
zero

Parameters:

tasks - Task objects containing start, duration and end variables

heights - integer variables representing the resource consumption
of each task

capacity - integer variable representing the resource capacity

incremental - specifies if an incremental propagation should be
applied

Returns:

a cumulative constraint

cumulative

default Constraint cumulative(Task[] tasks,
 IntVar[] heights,
 IntVar capacity,
 boolean incremental,
 Cumulative.Filter... filters)

Creates a cumulative constraint: Enforces that at each point in time, the cumulated
height of the set of tasks that overlap that point does not exceed a given limit. Task
duration and height should be >= 0 Discards tasks whose duration or height is equal to
zero

Parameters:

tasks - Task objects containing start, duration and end variables

heights - integer variables representing the resource consumption
of each task

capacity - integer variable representing the resource capacity

incremental - specifies if an incremental propagation should be
applied

filters - specifies which filtering algorithms to apply

Returns:

a cumulative constraint

cumulative

default Constraint cumulative(Task[] tasks,

http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/Task.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/nary/cumulative/Cumulative.Filter.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/Task.html

 IntVar[] heights,
 IntVar capacity,
 boolean incremental,
 CumulFilter... filters)

Creates a cumulative constraint: Enforces that at each point in time, the cumulated
height of the set of tasks that overlap that point does not exceed a given limit. Task
duration and height should be >= 0 Discards tasks whose duration or height is equal to
zero

Parameters:

tasks - Task objects containing start, duration and end variables

heights - integer variables representing the resource consumption
of each task

capacity - integer variable representing the resource capacity

incremental - specifies if an incremental propagation should be
applied

filters - specifies which filtering algorithms to apply

Returns:

a cumulative constraint

cumulative

default void cumulative(IntVar[] starts,
 int[] durations,
 int[] heights,
 int capacity)

Creates and posts a decomposition of a cumulative constraint: Enforces that at each
point in time, the cumulated height of the set of tasks that overlap that point does not
exceed a given limit. Task duration and height should be >= 0 Discards tasks whose
duration or height is equal to zero

Parameters:

starts - starting time of each task

durations - processing time of each task

heights - resource consumption of each task

capacity - resource capacity

diffN

default Constraint diffN(IntVar[] X,

http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/nary/cumulative/CumulFilter.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html

 IntVar[] Y,
 IntVar[] width,
 IntVar[] height,
 boolean addCumulativeReasoning)

Creates a diffN constraint. Constrains each rectanglei, given by their origins Xi,Yi and
sizes widthi,heighti, to be non-overlapping.

Parameters:

X - collection of coordinates in first dimension

Y - collection of coordinates in second dimension

width - collection of width (each duration should be > 0)

height - collection of height (each height should be >= 0)

addCumulativeReasoning - indicates whether or not redundant
cumulative constraints should be put on each dimension (advised)

Returns:

a non-overlapping constraint

element

default Constraint element(IntVar value,
 IntVar[] table,
 IntVar index,
 int offset)

Creates a element constraint: value = table[index-offset] where table is an array of
variables.

Parameters:

value - value variable

table - array of variables

index - index variable in range [offset,offset+|table|-1]

offset - int offset, generally 0

globalCardinality

default Constraint globalCardinality(IntVar[] vars,
 int[] values,
 IntVar[] occurrences,
 boolean closed)

Creates a global cardinality constraint (GCC): Each value values[i] should be taken by

http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html

exactly occurrences[i] variables of vars.
This constraint does not ensure any well-defined level of consistency, yet.

Parameters:

vars - collection of variables

values - collection of constrained values

occurrences - collection of cardinality variables

closed - restricts domains of vars to values if set to true

inverseChanneling

default Constraint inverseChanneling(IntVar[] vars1,
 IntVar[] vars2)

Creates an inverse channeling between vars1 and vars2: vars1[i] = j <=> vars2[j] = i
Performs AC if domains are enumerated. If not, then it works on bounds without
guaranteeing BC (enumerated domains are strongly recommended)

Beware you should have |vars1| = |vars2|

Parameters:

vars1 - vector of variables which take their value in
[0,|vars2|-1]

vars2 - vector of variables which take their value in
[0,|vars1|-1]

inverseChanneling

default Constraint inverseChanneling(IntVar[] vars1,
 IntVar[] vars2,
 int offset1,
 int offset2)

Creates an inverse channeling between vars1 and vars2: vars1[i-offset2] = j <=>
vars2[j-offset1] = i Performs AC if domains are enumerated. If not, then it works on
bounds without guaranteeing BC (enumerated domains are strongly recommended)

Beware you should have |vars1| = |vars2|

Parameters:

vars1 - vector of variables which take their value in
[offset1,offset1+|vars2|-1]

vars2 - vector of variables which take their value in
[offset2,offset2+|vars1|-1]

http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html

offset1 - lowest value in vars1 (most often 0)

offset2 - lowest value in vars2 (most often 0)

intValuePrecedeChain

default Constraint intValuePrecedeChain(IntVar[] X,
 int S,
 int T)

Creates an intValuePrecedeChain constraint. Ensure that if there exists j such that
X[j] = T, then, there must exist i < j such that X[i] = S.

Parameters:

X - an array of variables

S - a value

T - another value

intValuePrecedeChain

default Constraint intValuePrecedeChain(IntVar[] X,
 int[] V)

Creates an intValuePrecedeChain constraint. Ensure that, for each pair of V[k] and
V[l] of values in V, such that k < l, if there exists j such that X[j] = V[l], then, there
must exist i < j such that X[i] = V[k].

Parameters:

X - array of variables

V - array of (distinct) values

knapsack

default Constraint knapsack(IntVar[] occurrences,
 IntVar weightSum,
 IntVar energySum,
 int[] weight,
 int[] energy)

Creates a knapsack constraint. Ensures that :
- occurrences[i] * weight[i] = weightSum
- occurrences[i] * energy[i] = energySum
and maximizing the value of energySum.

http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html

A knapsack constraint wikipedia:
"Given a set of items, each with a weight and an energy value, determine the count of
each item to include in a collection so that the total weight is less than or equal to a
given limit and the total value is as large as possible. It derives its name from the
problem faced by someone who is constrained by a fixed-size knapsack and must fill it
with the most useful items." The limit over weightSum has to be specified either in its
domain or with an additional constraint:

 model.post(solver.arithm(weightSum, "<=", limit);

Parameters:

occurrences - number of occurrences of every item

weightSum - load of the knapsack

energySum - profit of the knapsack

weight - weight of each item (must be >=0)

energy - energy of each item (must be >=0)

keySort

default Constraint keySort(IntVar[][] vars,
 IntVar[] PERMvars,
 IntVar[][] SORTEDvars,
 int K)

Creates a keySort constraint which ensures that the variables of SORTEDvars
correspond to the variables of vars according to a permutation stored in PERMvars
(optional, can be null). The variables of SORTEDvars are also sorted in increasing
order wrt to K-size tuples. The sort is stable, that is, ties are broken using the position
of the tuple in vars.

For example:
- vars= (<4,2,2>,<2,3,1>,<4,2,1><1,3,0>)
- SORTEDvars= (<1,3,0>,<2,3,1>,<4,2,2>,<4,2,1>)
- PERMvars= (2,1,3,0)
- K = 2

Parameters:

vars - a tuple of array of variables

PERMvars - array of permutation variables, domains should be
[1,vars.length] -- Can be null

SORTEDvars - a tuple of array of variables sorted in increasing
order

K - key perfixes size (0 ≤ k ≤ m, where m is the size of the

http://en.wikipedia.org/wiki/Knapsack_problem
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html

array of variable)

Returns:

a keySort constraint

lexChainLess

default Constraint lexChainLess(IntVar[]... vars)

Creates a lexChainLess constraint. For each pair of consecutive vectors varsi and
varsi+1 of the vars collection varsi is lexicographically strictly less than than varsi+1

Parameters:

vars - collection of vectors of variables

lexChainLessEq

default Constraint lexChainLessEq(IntVar[]... vars)

Creates a lexChainLessEq constraint. For each pair of consecutive vectors varsi and
varsi+1 of the vars collection varsi is lexicographically less or equal than than varsi+1

Parameters:

vars - collection of vectors of variables

lexLess

default Constraint lexLess(IntVar[] vars1,
 IntVar[] vars2)

Creates a lexLess constraint. Ensures that vars1 is lexicographically strictly less than
vars2.

Parameters:

vars1 - vector of variables

vars2 - vector of variables

lexLessEq

default Constraint lexLessEq(IntVar[] vars1,
 IntVar[] vars2)

Creates a lexLessEq constraint. Ensures that vars1 is lexicographically less or equal
than vars2.

http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html

Parameters:

vars1 - vector of variables

vars2 - vector of variables

max

default Constraint max(IntVar max,
 IntVar[] vars)

Creates a maximum constraint. max is the maximum value of the collection of domain
variables vars

Parameters:

max - a variable

vars - a vector of variables, of size > 0

max

default Constraint max(BoolVar max,
 BoolVar[] vars)

Creates a maximum constraint. max is the maximum value of the collection of boolean
variables vars

Parameters:

max - a boolean variable

vars - a vector of boolean variables, of size > 0

mddc

default Constraint mddc(IntVar[] vars,
 MultivaluedDecisionDiagram MDD)

Create a constraint where solutions (tuples) are encoded by a multi-valued decision
diagram. The order of the variables in vars is important and must refer to the MDD.

Parameters:

vars - the array of variables

MDD - the multi-valued decision diagram encoding solutions

min

http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/BoolVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/BoolVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/util/objects/graphs/MultivaluedDecisionDiagram.html

default Constraint min(IntVar min,
 IntVar[] vars)

Creates a minimum constraint. min is the minimum value of the collection of domain
variables vars

Parameters:

min - a variable

vars - a vector of variables, of size > 0

min

default Constraint min(BoolVar min,
 BoolVar[] vars)

Creates a minimum constraint. min is the minimum value of the collection of boolean
variables vars

Parameters:

min - a boolean variable

vars - a vector of boolean variables, of size > 0

multiCostRegular

default Constraint multiCostRegular(IntVar[] vars,
 IntVar[] costVars,
 ICostAutomaton costAutomaton)

Creates a regular constraint that supports a multiple cost function. Ensures that the
assignment of a sequence of vars is recognized by costAutomaton, a deterministic
finite automaton, and that the sum of the cost vector associated to each assignment is
bounded by the variable vector costVars. This version allows to specify different costs
according to the automaton state at which the assignment occurs (i.e. the transition
starts)

Parameters:

vars - sequence of variables

costVars - cost variables

costAutomaton - a deterministic finite automaton defining the
regular language and the costs Can be built from method
CostAutomaton.makeMultiResources(...)

multiCostRegular

http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/BoolVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/BoolVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/nary/automata/FA/ICostAutomaton.html

default Constraint multiCostRegular(IntVar[] vars,
 IntVar[] costVars,
 ICostAutomaton costAutomaton,
 double precision)

Creates a regular constraint that supports a multiple cost function. Ensures that the
assignment of a sequence of vars is recognized by costAutomaton, a deterministic
finite automaton, and that the sum of the cost vector associated to each assignment is
bounded by the variable vector costVars. This version allows to specify different costs
according to the automaton state at which the assignment occurs (i.e. the transition
starts)

Parameters:

vars - sequence of variables

costVars - cost variables

costAutomaton - a deterministic finite automaton defining the
regular language and the costs Can be built from method
CostAutomaton.makeMultiResources(...)

precision - the smallest used double for MCR algorithm

nValues

default Constraint nValues(IntVar[] vars,
 IntVar nValues)

Creates an nValue constraint. Let N be the number of distinct values assigned to the
variables of the vars collection. Enforce condition N = nValues to hold.

This embeds a light propagator by default. Additional filtering algorithms can be
added.

see atleast_nvalue and atmost_nvalue

Parameters:

vars - collection of variables

nValues - limit variable

Returns:

the conjunction of atleast_nvalue and atmost_nvalue

or

default Constraint or(BoolVar... bools)

Creates an or constraint that is satisfied if at least one boolean variables in bools is true

http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/nary/automata/FA/ICostAutomaton.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/BoolVar.html

Parameters:

bools - an array of boolean variable

Returns:

a constraint that is satisfied if at least one boolean variables
in bools is true

or

default Constraint or(Constraint... cstrs)

Creates an or constraint that is satisfied if at least one constraint in cstrs are satisfied

Parameters:

cstrs - an array of constraints

Returns:

a constraint and ensuring that at least one constraint in cstrs
are satisfied

path

default Constraint path(IntVar[] vars,
 IntVar start,
 IntVar end)

Creates a path constraint which ensures that

the elements of vars define a covering path from start to end

where vars[i] = j means that j is the successor of i.

Moreover, vars[end] = |vars|

Requires : |vars|>0

Filtering algorithms: see circuit constraint

Parameters:

vars - vector of variables which take their value in [0,|vars|]

start - variable indicating the index of the first variable in
the path

end - variable indicating the index of the last variable in the
path

Returns:

a path constraint

http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html

path

default Constraint path(IntVar[] vars,
 IntVar start,
 IntVar end,
 int offset)

Creates a path constraint which ensures that

the elements of vars define a covering path from start to end

where vars[i] = offset+j means that j is the successor of i.

Moreover, vars[end-offset] = |vars|+offset

Requires : |vars|>0

Filtering algorithms: see circuit constraint

Parameters:

vars - vector of variables which take their value in
[offset,offset+|vars|]

start - variable indicating the index of the first variable in
the path

end - variable indicating the index of the last variable in the
path

offset - 0 by default but typically 1 if used within MiniZinc
(which counts from 1 to n instead of from 0 to n-1)

Returns:

a path constraint

regular

default Constraint regular(IntVar[] vars,
 IAutomaton automaton)

Creates a regular constraint. Enforces the sequence of vars to be a word recognized by
the deterministic finite automaton. For example regexp = "(1|2)(3*)(4|5)"; The same
dfa can be used for different propagators.

Parameters:

vars - sequence of variables

automaton - a deterministic finite automaton defining the regular
language

http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/nary/automata/FA/IAutomaton.html

scalar

default Constraint scalar(IntVar[] vars,
 int[] coeffs,
 String operator,
 int scalar)

Creates a scalar constraint which ensures that Sum(vars[i]*coeffs[i]) operator scalar

Parameters:

vars - a collection of IntVar

coeffs - a collection of int, for which |vars|=|coeffs|

operator - an operator in {"=", "!=", ">","<",">=","<="}

scalar - an integer

Returns:

a scalar constraint

scalar

default Constraint scalar(IntVar[] vars,
 int[] coeffs,
 String operator,
 int scalar,
 int minCardForDecomp)

Creates a scalar constraint which ensures that Sum(vars[i]*coeffs[i]) operator scalar

Parameters:

vars - a collection of IntVar

coeffs - a collection of int, for which |vars|=|coeffs|

operator - an operator in {"=", "!=", ">","<",">=","<="}

scalar - an integer

minCardForDecomp - minimum number of cardinality threshold to a
sum constraint to be decomposed

Returns:

a scalar constraint

scalar

default Constraint scalar(IntVar[] vars,
 int[] coeffs,

http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html?is-external=true
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html?is-external=true
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html

 String operator,
 IntVar scalar)

Creates a scalar constraint which ensures that Sum(vars[i]*coeffs[i]) operator scalar

Parameters:

vars - a collection of IntVar

coeffs - a collection of int, for which |vars|=|coeffs|

operator - an operator in {"=", "!=", ">","<",">=","<="}

scalar - an IntVar

Returns:

a scalar constraint

scalar

default Constraint scalar(IntVar[] vars,
 int[] coeffs,
 String operator,
 IntVar scalar,
 int minCardForDecomp)

Creates a scalar constraint which ensures that Sum(vars[i]*coeffs[i]) operator scalar

Parameters:

vars - a collection of IntVar

coeffs - a collection of int, for which |vars|=|coeffs|

operator - an operator in {"=", "!=", ">","<",">=","<="}

scalar - an IntVar

minCardForDecomp - minimum number of cardinality threshold to a
sum constraint to be decomposed

Returns:

a scalar constraint

sort

default Constraint sort(IntVar[] vars,
 IntVar[] sortedVars)

Creates a sort constraint which ensures that the variables of sortedVars correspond to
the variables of vars according to a permutation. The variables of sortedVars are also
sorted in increasing order.

https://docs.oracle.com/javase/8/docs/api/java/lang/String.html?is-external=true
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html?is-external=true
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html

For example:
- X= (4,2,1,3)
- Y= (1,2,3,4)

Parameters:

vars - an array of variables

sortedVars - an array of variables sorted in increasing order

Returns:

a sort constraint

subCircuit

default Constraint subCircuit(IntVar[] vars,
 int offset,
 IntVar subCircuitLength)

Creates a subCircuit constraint which ensures that

the elements of vars define a single circuit of subcircuitSize nodes where

vars[i] = offset+j means that j is the successor of i.

and vars[i] = offset+i means that i is not part of the circuit

the constraint ensures that |{vars[i] =/= offset+i}| = subCircuitLength

Filtering algorithms:

subtour elimination : Caseau & Laburthe (ICLP'97)

allDifferent GAC algorithm: Régin (AAAI'94)

dominator-based filtering: Fages & Lorca (CP'11) (adaptive scheme by default, see
implementation)

Parameters:

vars - a vector of variables

offset - 0 by default but 1 if used within MiniZinc (which counts
from 1 to n instead of from 0 to n-1)

subCircuitLength - expected number of nodes in the circuit

Returns:

a subCircuit constraint

subPath

http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html

default Constraint subPath(IntVar[] vars,
 IntVar start,
 IntVar end,
 int offset,
 IntVar SIZE)

Creates a subPath constraint which ensures that

the elements of vars define a path of SIZE vertices, leading from start to end

where vars[i] = offset+j means that j is the successor of i.

where vars[i] = offset+i means that vertex i is excluded from the path.

Moreover, vars[end-offset] = |vars|+offset

Requires : |vars|>0

Filtering algorithms: see subCircuit constraint

Parameters:

vars - vector of variables which take their value in
[offset,offset+|vars|]

start - variable indicating the index of the first variable in
the path

end - variable indicating the index of the last variable in the
path

offset - 0 by default but typically 1 if used within MiniZinc
(which counts from 1 to n instead of from 0 to n-1)

SIZE - variable indicating the number of variables to belong to
the path

Returns:

a subPath constraint

sum

default Constraint sum(IntVar[] vars,
 String operator,
 int sum)

Creates a sum constraint. Enforces that ∑i in |vars|varsi operator sum.

Parameters:

vars - a collection of IntVar

operator - operator in {"=", "!=", ">","<",">=","<="}

http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html?is-external=true

sum - an integer

Returns:

a sum constraint

sum

default Constraint sum(IntVar[] vars,
 String operator,
 int sum,
 int minCardForDecomp)

Creates a sum constraint. Enforces that ∑i in |vars|varsi operator sum.

Parameters:

vars - a collection of IntVar

operator - operator in {"=", "!=", ">","<",">=","<="}

sum - an integer

minCardForDecomp - minimum number of cardinality threshold to a
sum constraint to be decomposed

Returns:

a sum constraint

sum

default Constraint sum(IntVar[] vars,
 String operator,
 IntVar sum)

Creates a sum constraint. Enforces that ∑i in |vars|varsi operator sum.

Parameters:

vars - a collection of IntVar

operator - operator in {"=", "!=", ">","<",">=","<="}

sum - an IntVar

Returns:

a sum constraint

sum

default Constraint sum(IntVar[] vars,

http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html?is-external=true
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html?is-external=true
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html

 String operator,
 IntVar sum,
 int minCardForDecomp)

Creates a sum constraint. Enforces that ∑i in |vars|varsi operator sum.

Parameters:

vars - a collection of IntVar

operator - operator in {"=", "!=", ">","<",">=","<="}

sum - an IntVar

minCardForDecomp - minimum number of cardinality threshold to a
sum constraint to be decomposed

Returns:

a sum constraint

sum

default Constraint sum(BoolVar[] vars,
 String operator,
 int sum)

Creates a sum constraint. Enforces that ∑i in |vars|varsi operator sum. This constraint is
much faster than the one over integer variables

Parameters:

vars - a vector of boolean variables

sum - an integer

sum

default Constraint sum(BoolVar[] vars,
 String operator,
 IntVar sum)

Creates a sum constraint. Enforces that ∑i in |vars|varsi operator sum. This constraint is
much faster than the one over integer variables

Parameters:

vars - a vector of boolean variables

sum - a variable

sum

https://docs.oracle.com/javase/8/docs/api/java/lang/String.html?is-external=true
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/BoolVar.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html?is-external=true
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/BoolVar.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html?is-external=true
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html

default Constraint sum(BoolVar[] vars,
 String operator,
 IntVar sum,
 int minCardForDecomp)

Creates a sum constraint. Enforces that ∑i in |vars|varsi operator sum. This constraint is
much faster than the one over integer variables

Parameters:

vars - a vector of boolean variables

sum - a variable

minCardForDecomp - minimum number of cardinality threshold to a
sum constraint to be decomposed

table

default Constraint table(IntVar[] vars,
 Tuples tuples)

Creates a table constraint specifying that the sequence of variables vars must belong to
the list of tuples (or must NOT belong in case of infeasible tuples) Default
configuration with GACSTR+ algorithm for feasible tuples and GAC3rm otherwise

Parameters:

vars - variables forming the tuples

tuples - the relation between the variables (list of
allowed/forbidden tuples)

table

default Constraint table(IntVar[] vars,
 Tuples tuples,
 String algo)

Creates a table constraint, with the specified algorithm defined algo

- CT+: Compact-Table algorithm (AC),
- GAC2001: Arc Consistency version 2001 for tuples,
- GAC2001+: Arc Consistency version 2001 for allowed tuples,
- GAC3rm: Arc Consistency version AC3 rm for tuples,
- GAC3rm+ (default): Arc Consistency version 3rm for allowed tuples,
- GACSTR+: Arc Consistency version STR for allowed tuples,
- STR2+: Arc Consistency version STR2 for allowed tuples,
- FC: Forward Checking.

http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/BoolVar.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html?is-external=true
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/extension/Tuples.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/extension/Tuples.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html?is-external=true

- MDD+: uses a multi-valued decision diagram for allowed tuples (see mddc
constraint),

Parameters:

vars - variables forming the tuples

tuples - the relation between the variables (list of
allowed/forbidden tuples). Should not be modified once passed to
the constraint.

algo - to choose among {"TC+", "GAC3rm", "GAC2001", "GACSTR",
"GAC2001+", "GAC3rm+", "FC", "STR2+"}

tree

default Constraint tree(IntVar[] succs,
 IntVar nbTrees)

Creates a tree constraint. Partition succs variables into nbTrees (anti) arborescences

succs[i] = j means that j is the successor of i.

and succs[i] = i means that i is a root

dominator-based filtering: Fages & Lorca (CP'11)

However, the filtering over nbTrees is quite light here

Parameters:

succs - successors variables, taking their domain in
[0,|succs|-1]

nbTrees - number of arborescences (=number of loops)

Returns:

a tree constraint

tree

default Constraint tree(IntVar[] succs,
 IntVar nbTrees,
 int offset)

Creates a tree constraint. Partition succs variables into nbTrees (anti) arborescences

succs[i] = offset+j means that j is the successor of i.

and succs[i] = offset+i means that i is a root

dominator-based filtering: Fages & Lorca (CP'11)

http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/Constraint.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html

OVERVIEW PACKAGE CLASS USE TREE DEPRECATED INDEX HELP

PREV CLASS NEXT CLASS FRAMES NO FRAMES ALL CLASSES

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD
Copyright © 2019. All rights reserved.

However, the filtering over nbTrees is quite light here

Parameters:

succs - successors variables, taking their domain in
[offset,|succs|-1+offset]

nbTrees - number of arborescences (=number of loops)

offset - 0 by default but 1 if used within MiniZinc (which counts
from 1 to n instead of from 0 to n-1)

Returns:

a tree constraint

getDomainUnion

default int[] getDomainUnion(IntVar... vars)

Get the list of values in the domains of vars

Parameters:

vars - an array of integer variables

Returns:

the list of values in the domains of vars

http://www.choco-solver.org/apidocs/overview-summary.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/package-summary.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/class-use/IIntConstraintFactory.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/package-tree.html
http://www.choco-solver.org/apidocs/deprecated-list.html
http://www.choco-solver.org/apidocs/index-all.html
http://www.choco-solver.org/apidocs/help-doc.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/IDecompositionFactory.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/IRealConstraintFactory.html
http://www.choco-solver.org/apidocs/index.html?org/chocosolver/solver/constraints/IIntConstraintFactory.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/constraints/IIntConstraintFactory.html
http://www.choco-solver.org/apidocs/allclasses-noframe.html
http://www.choco-solver.org/apidocs/org/chocosolver/solver/variables/IntVar.html

