
2020 Lecture 4: Associating Narrowing Functions to Constraints 1

Associating Narrowing Functions

to Constraints

Jorge Cruz
DI/FCT/UNL

2020

Lecture 4: Associating Narrowing Functions to Constraints 2

Associating Narrowing Functions to Constraints

2020

Narrowing Functions and their Properties

Constraint Newton Method

Constraint Decomposition Method

Narrowing Functions for Single Constraints

Revise Procedures

Reformulation-Linearization

Multivariate Interval Newton

Narrowing Functions for Systems of Constraints

Linear relaxation based on affine arithmetic

Corner-based Taylor relaxation

Lecture 4: Associating Narrowing Functions to Constraints 3

Narrowing Functions and their Properties

The pruning of the variable domains according to the constraints

of a CCSP is based on narrowing functions

Narrowing Function. Let P=(X,D,C) be a CCSP. A narrowing function NF associated

with a constraint c=(s,) (with cC) is a mapping between elements of 2
D
 with the

following properties (where A is any element of the domain of NF):

P1) NF(A)A (contractance)

P2) dA dNF(A) d[s] (correctness) ❑

A narrowing function must be able to narrow the domains

(contractance) without loosing solutions (correctness)

2020

Monotonicity and Idempotency are additional properties common

to most of the narrowing functions used in interval constraints
Monotonicity and Idempotency. Let P=(X,D,C) be a CCSP. Let NF be a narrowing

function associated with a constraint of C. Let A1 and A2 be any elements of the domain

of NF. NF is respectively monotonic and idempotent iff the following properties hold:

P3) A1 A2 NF(A1) NF(A2) (monotonicity)

P4) NF(NF(A1)) = NF(A1) (idempotency) ❑

Lecture 4: Associating Narrowing Functions to Constraints 4

Narrowing functions from Interval Extension Evaluation

The simplest method to associate a narrowing function to a

constraint f (x) = 0 consists in evaluating with interval arithmetic

an interval extension F of f with the current box B and check

whether 0 belongs to the result. If not, the box may be discarded.

This binary contractor (in the sense that it keeps all or nothing) can

be easily extended to inequalities and may be applied with

different interval extensions of f or even their intersection.

2020

𝑁𝐹𝑓 𝓍 =0 𝐵 = ቊ
𝐵 𝑖𝑓 0 ∈ 𝐹(𝐵)
∅ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

No solution is lost since by the definition of interval extension:

∀𝓍∈𝐵𝑓(𝑥) ∈ 𝐹(𝑥) and by monotonicity: [𝑥] ⊆ 𝐵 → 𝐹(𝑥) ⊆ 𝐹(𝐵)

Lecture 4: Associating Narrowing Functions to Constraints 5

Narrowing functions from Interval Extension Evaluation

Another method to associate narrowing functions to a multivariate

constraint f (x) = 0 is by solving it wrt to each variable and

evaluate the expressions in current box B to narrow their domains.

2020

𝑁𝐹𝑓 𝑥1,𝑥2 =0 𝐼1, 𝐼2 = 𝐼1 ∩
1

exp 𝐼2
, 𝐼2 ∩ 𝑙𝑜𝑔

1

𝐼1

𝑓 𝑥1, 𝑥2 = 𝑥1 exp 𝑥2 − 1Example:

It is not always possible to solve an equation wrt a variable!

𝑓 𝑥1, 𝑥2 = 𝑥1 exp 𝑥1𝑥2 − sin(𝑥2)Example:

Lecture 4: Associating Narrowing Functions to Constraints 6

Projection Function and its Enclosure

Usually, narrowing functions are associated with a constraint by

considering projections with respect to each variable in the scope

A projection function identifies from a box:

all the possible values of a particular variable for which there is

a value combination belonging to the constraint relation

Projection Function. Let P=(X,D,C) be a CCSP. The projection function with respect to

a constraint c=(s,)C and a variable xis, denoted xi

, obtains a set of real values from

a real box B and is defined by:

xi

(B) = { d[xi] | d d B } = (B)[xi] ❑

All value combinations within B with xi values outside xi

(B) are

outside the relation and so they do not satisfy the constraint c.

2020

Lecture 4: Associating Narrowing Functions to Constraints 7

Projection Function and its Enclosure

x2

x1

x1 = 0 x1 = x2

B

0 0.5 1.5

0.5

1.5

x
1

(B) = {0} [0.5..1.5]

x
2

(B) = [0.5..1.5]

c x1(x2-x1) = 0

P = (X,D,C) = (<x1,x2>,D1D2,{c})

D1=[-1..3] D2 =[-0.5..2]

B =<[-0.5..2.5],[0.5..1.5]>

 = { <x1,x2>D | x1(x2-x1) = 0 }

c = (<x1,x2>,)

All value combinations within B with xi values outside xi

(B) are

outside the relation and so they do not satisfy the constraint c.

2020

Lecture 4: Associating Narrowing Functions to Constraints 8

Projection Function and its Enclosure

A box-narrowing function narrows the domain of one variable,

from a box representing all the variables of the CCSP, eliminating

some values that do not belong to a projection function

Correctness follows from xi

(B[s]) I1 … Im (the eliminated

combinations have xi values outside the projection function)

Box-Narrowing Function. Let P=(X,D,C) be a CCSP (with X=<x1,…,xi,…,xn>). A box-

narrowing function with respect to a constraint (s,)C and a variable xis is a mapping,

denoted BNFxi

, that relates any F-box B=<Ix1

,…, Ixi
,…, Ixn

> (BD) with the union of m

(1m) F-boxes, defined by:

BNFxi

(<Ix1

,…, Ixi
,…, Ixn

>) = <Ix1
,…, I1,…, Ixn

> … <Ix1
,…, Im,…, Ixn

>

satisfying the property:

 xi

(B[s]) I1 … Im Ixi

 ❑

Contractance follows from I1…Im Ixi
(the only changed

domain is smaller than the original)

2020

Lecture 4: Associating Narrowing Functions to Constraints 9

Constraint Decomposition Method

Decomposition of complex constraints into an equivalent set of

primitive constraints whose projection functions can be easily

computed by inverse functions

A set of primitive constraints can be easily obtained from any non-

primitive constraint:

A constraint may be decomposed by considering new variables and new

equality constraints

The whole set of primitives may be obtained by repeating this process

until all constraints are primitive

Primitive Constraints

Primitive Constraint. Let ec be a real expression with at most one basic operator and

with no multiple occurrences of its variables. Let e0 be a real constant or a real variable

not appearing in ec. The constraint c is a primitive constraint iff it is expressed as:

ec ⋄ e0 with ⋄ {,=,} ❑

2020

Lecture 4: Associating Narrowing Functions to Constraints 10

Constraint Decomposition Method

Primitive Constraints
x2

x1

x1 = 0 x1 = x2

B

0 0.5 1.5

0.5

1.5

x
1

(B) = {0} [0.5..1.5]

x
2

(B) = [0.5..1.5]

c x1(x2-x1) = 0

P = (X,D,C) = (<x1,x2>,D1D2,{c})

D1=[-1..3] D2 =[-0.5..2]

B =<[-0.5..2.5],[0.5..1.5]>

 = { <x1,x2>D | x1(x2-x1) = 0 }

c = (<x1,x2>,)

The constraint c is not primitive since it contains two basic

arithmetic operators and the variable x1 occurs twice

2020

Lecture 4: Associating Narrowing Functions to Constraints 11

Constraint Decomposition Method

Primitive Constraints
x2

x1

x1 = 0 x1 = x2

B

0 0.5 1.5

0.5

1.5

x
1

(B) = {0} [0.5..1.5]

x
2

(B) = [0.5..1.5]

c x1(x2-x1) = 0

P = (X,D,C) = (<x1,x2>,D1D2,{c})

D1=[-1..3] D2 =[-0.5..2]

B =<[-0.5..2.5],[0.5..1.5]>

 = { <x1,x2>D | x1(x2-x1) = 0 }

c = (<x1,x2>,)

a new variable x3 is introduced and c is replaced by c1 and c2

P’=(<x1,x2,x3>,D1D2[-..+],{c1,c2})

the domain of x3 is unbounded defining a new equivalent CCSP P’

c1 x1x3=0

c2 x2-x1=x3

2020

Lecture 4: Associating Narrowing Functions to Constraints 12

Constraint Decomposition Method

Inverse Functions

Inverse Interval Expression. Let c=(s,) be a primitive constraint expressed in the form

ec⋄e0 where ece1 or ec(e1,…,em) (is an m-ary basic operator and ei a variable from s

or a real constant). The inverse interval expression of c with respect to ei, denoted ei, is

the natural interval expression of the expression obtained by solving algebraically, wrt ei,

the equality ec=e0 if c is an equality or ec=e0+k if c is an inequality (with k0 for

inequalities of the form ece0 and k0 for inequalities of the form ece0). ❑

 e1 e2 e3

⋄{,=,}

e1+e2⋄e3 (E3+K)-E2 (E3+K)-E1 (E1+E2)-K ei is a real variable or a real constant

e1-e2⋄e3 (E3+K)+E2 E1-(E3+K) (E1-E2)-K Ei is the natural interval extension of ei

e1e2⋄e3 (E3+K)/E2 (E3+K)/E1 (E1E2)-K [-..0] if ⋄

e1/e2⋄e3 (E3+K)E2 E1/(E3+K) (E1/E2)-K
K= [0..0] if ⋄ =

e1⋄e2 (E2+K) E1-K [0..+] if ⋄

2020

Lecture 4: Associating Narrowing Functions to Constraints 13

Constraint Decomposition Method
Inverse Functions

x2

x1

x1 = 0 x1 = x2

B

0 0.5 1.5

0.5

1.5

x
1

(B) = {0} [0.5..1.5]

x
2

(B) = [0.5..1.5]

c x1(x2-x1) = 0

P = (X,D,C) = (<x1,x2>,D1D2,{c})

D1=[-1..3] D2 =[-0.5..2]

B =<[-0.5..2.5],[0.5..1.5]>

 = { <x1,x2>D | x1(x2-x1) = 0 }

c = (<x1,x2>,)

P’=(<x1,x2,x3>,D1D2[-..+],{c1,c2})

c1 x1x3=0

c2 x2-x1=x3

 e1 e2 e3

x1x3=0 0/X3 0/X1 X1X3

x2-x1=x3 X3+X1 X2-X3 X2-X1

The inverse interval expressions are associated with the primitive

constraints of the decomposed CCSP P’

2020

Lecture 4: Associating Narrowing Functions to Constraints 14

Constraint Decomposition Method

Projection Function Enclosure with the Inverse Function

Projection Function based on the Inverse Interval Expression. Let P=(X,D,C) be a

CCSP. Let c=(s,)C be an n-ary primitive constraint expressed in the form ec⋄e0 where

ece1 or ec(e1,…,em) (with an m-ary basic operator and ei a variable from s or a real

constant). Let xi be the inverse interval expression of c with respect to the variable xi (ei

 xi). The projection function xi

 of the constraint c wrt variable xi is the mapping:

xi

(B) = xi(B) B[xi] where B is an n-ary real box ❑

The inverse interval expression wrt a variable allows the definition

of the projection function of the constraint wrt to that variable

x1x3=0 x2-x1=x3

x1

(<I1,I3>) = (0/I3) I1

 x1

(<I1,I2,I3>) = (I2-I3) I1

x3

(<I1,I3>) = (0/I1) I3

 x2

(<I1,I2,I3>) = (I3+I1) I2

 x3

(<I1,I2,I3>) = (I2-I1) I3

2020

Lecture 4: Associating Narrowing Functions to Constraints 15

Constraint Decomposition Method
Projection Function Enclosure with the Inverse Function

x2

x1

x1 = 0 x1 = x2

B

0 0.5 1.5

0.5

1.5

x
1

(B) = {0} [0.5..1.5]

x
2

(B) = [0.5..1.5]

c x1(x2-x1) = 0

P = (X,D,C) = (<x1,x2>,D1D2,{c})

D1=[-1..3] D2 =[-0.5..2]

B =<[-0.5..2.5],[0.5..1.5]>

 = { <x1,x2>D | x1(x2-x1) = 0 }

c = (<x1,x2>,)

P’=(<x1,x2,x3>,D1D2[-..+],{c1,c2})

c1 x1x3=0

c2 x2-x1=x3

 e1 e2 e3

x1x3=0 0/X3 0/X1 X1X3

x2-x1=x3 X3+X1 X2-X3 X2-X1

NF1 BNFx1

(<I1,I2,I3>) = <(0/I3) I1,I2,I3>

x1x3=0
NF2 BNFx3

(<I1,I2,I3>) = <I1,I2,(0/I1) I3>

 NF3 BNFx1

(<I1,I2,I3>) = <(I2-I3) I1,I2,I3>

x2-x1=x3 NF4 BNFx2

(<I1,I2,I3>) = <I1,(I3+I1) I2,I3>

 NF5 BNFx3

(<I1,I2,I3>) = <I1,I2,(I2-I1) I3>

Box-narrowing functions

are associated with the

decomposed CCSP P’

2020

Lecture 4: Associating Narrowing Functions to Constraints 16

Constraint Decomposition Method

Example

with B =<[-0.5,2.5],[0.5,1.5]> no pruning would be obtained:

x2

x1

x1 = 0 x1 = x2

B

0 0.5 1.5

0.5

1.5

x
1

(B) = {0} [0.5..1.5]

x
2

(B) = [0.5..1.5]

c x1(x2-x1) = 0

P = (X,D,C) = (<x1,x2>,D1D2,{c})

D1=[-1..3] D2 =[-0.5..2]

B =<[-0.5..2.5],[0.5..1.5]>

 = { <x1,x2>D | x1(x2-x1) = 0 }

c = (<x1,x2>,)

c1 x1x3=0

c2 x2-x1=x3

P’=(<x1,x2,x3>,D1D2[-..+],{c1,c2})

B’=<[-0.5,2.5],[0.5,1.5]> and x3=[-2.0,2.0]

B’= NF1(<I1,I2,I3>) = <(0/I3) I1,I2,I3>

NF2(<I1,I2,I3>) = <I1,I2,(0/I1) I3>

NF3(<I1,I2,I3>) = <(I2-I3) I1,I2,I3>

NF4(<I1,I2,I3>) = <I1,(I3+I1) I2,I3>

NF5(<I1,I2,I3>) = <I1,I2,(I2-I1) I3>

2020

Lecture 4: Associating Narrowing Functions to Constraints 17

Constraint Decomposition Method

Example

with B =<[0.25,1.0],[0.5,1.5]> the best narrowing is obtained:

x2

x1

x1 = 0 x1 = x2

B

0 0.5 1.5

0.5

1.5

x
1

(B) = [0.5,1.0]

x
2

(B) = [0.5..1.0]

c x1(x2-x1) = 0

P = (X,D,C) = (<x1,x2>,D1D2,{c})

D1=[-1..3] D2 =[-0.5..2]

B =<[-0.5..2.5],[0.5..1.5]>

 = { <x1,x2>D | x1(x2-x1) = 0 }

c = (<x1,x2>,)

c1 x1x3=0

c2 x2-x1=x3

P’=(<x1,x2,x3>,D1D2[-..+],{c1,c2})

B’=<[0.5,1.0],[0.5,1.0]> and x3=[0.0,0.0]

B’

NF1(<I1,I2,I3>) = <(0/I3) I1,I2,I3>

NF2(<I1,I2,I3>) = <I1,I2,(0/I1) I3>

NF3(<I1,I2,I3>) = <(I2-I3) I1,I2,I3>

NF4(<I1,I2,I3>) = <I1,(I3+I1) I2,I3>

NF5(<I1,I2,I3>) = <I1,I2,(I2-I1) I3>

2020

Lecture 4: Associating Narrowing Functions to Constraints 18

Constraint Decomposition Method

Example

with B =<[-1.0,0.25],[0.5,1.5]> the best narrowing is also

obtained:

x2

x1

x1 = 0 x1 = x2

B

0 0.5 1.5

0.5

1.5

x
1

(B) = [0.0,0.0]

x
2

(B) = [0.5..1.0]

c x1(x2-x1) = 0

P = (X,D,C) = (<x1,x2>,D1D2,{c})

D1=[-1..3] D2 =[-0.5..2]

B =<[-0.5..2.5],[0.5..1.5]>

 = { <x1,x2>D | x1(x2-x1) = 0 }

c = (<x1,x2>,)

c1 x1x3=0

c2 x2-x1=x3

P’=(<x1,x2,x3>,D1D2[-..+],{c1,c2})

B’=<[0.0,0.0],[0.5,1.5]> and x3=[0.5,1.5]

B’

NF1(<I1,I2,I3>) = <(0/I3) I1,I2,I3>

NF2(<I1,I2,I3>) = <I1,I2,(0/I1) I3>

NF3(<I1,I2,I3>) = <(I2-I3) I1,I2,I3>

NF4(<I1,I2,I3>) = <I1,(I3+I1) I2,I3>

NF5(<I1,I2,I3>) = <I1,I2,(I2-I1) I3>

2020

Lecture 4: Associating Narrowing Functions to Constraints 19

Constraint Decomposition Method

Example

with B =<[-1.0,-0.25],[0.5,1.5]> inconsistency is proved:

x2

x1

x1 = 0 x1 = x2

B

0 0.5 1.5

0.5

1.5

x
1

(B) =

x
2

(B) =

c x1(x2-x1) = 0

P = (X,D,C) = (<x1,x2>,D1D2,{c})

D1=[-1..3] D2 =[-0.5..2]

B =<[-0.5..2.5],[0.5..1.5]>

 = { <x1,x2>D | x1(x2-x1) = 0 }

c = (<x1,x2>,)

c1 x1x3=0

c2 x2-x1=x3

P’=(<x1,x2,x3>,D1D2[-..+],{c1,c2})

B’=

B’=

NF1(<I1,I2,I3>) = <(0/I3) I1,I2,I3>

NF2(<I1,I2,I3>) = <I1,I2,(0/I1) I3>

NF3(<I1,I2,I3>) = <(I2-I3) I1,I2,I3>

NF4(<I1,I2,I3>) = <I1,(I3+I1) I2,I3>

NF5(<I1,I2,I3>) = <I1,I2,(I2-I1) I3>

2020

Lecture 4: Associating Narrowing Functions to Constraints 20

Constraint Newton Method

Complex constraints are handled without decomposition using a

technique based on the interval Newton method for searching the

zeros of univariate functions

Interval Projections

Interval Projection. Let P=(X,D,C) be a CCSP. Let c=(s,)C be an n-ary constraint

expressed in the form ec⋄0 (with ⋄{,=,} and ec a real expression). Let B be an n-ary

F-box. The interval projection of c wrt xis and B is the function, denoted xi

B
,

represented by the expression obtained by replacing in ec each real variable xj (xjxi) by

the interval constant B[xj]. ❑

2020

Lecture 4: Associating Narrowing Functions to Constraints 21

Constraint Newton Method

x2

x1

x1 = 0 x1 = x2

B

0 0.5 1.5

0.5

1.5

x
1

(B) = {0} [0.5..1.5]

x
2

(B) = [0.5..1.5]

c x1(x2-x1) = 0

P = (X,D,C) = (<x1,x2>,D1D2,{c})

D1=[-1..3] D2 =[-0.5..2]

B =<[-0.5..2.5],[0.5..1.5]>

 = { <x1,x2>D | x1(x2-x1) = 0 }

c = (<x1,x2>,)

Interval Projections

x1

B x1([0.5..1.5]-x1)

x2

B [-0.5..2.5](x2-[-0.5..2.5])

2020

Lecture 4: Associating Narrowing Functions to Constraints 22

Constraint Newton Method

Properties of an Interval Projection

From the properties of the interval projections, a strategy is

devised for obtaining an enclosure of the projection function

Properties of the Interval Projection. Let P=(X,D,C) be a CCSP. Let c=(s,)C be an

n-ary constraint expressed in the form ec⋄0 (with ⋄{,=,} and ec a real expression)

and B an n-ary F-box. Let xi

B
 be the interval projection of c wrt variable xis and B.

The following property is necessarily satisfied:

 rB[xi] rxi

(B) vxi

B
([r]): v⋄0

We will say that a real value r satisfies the interval projection condition if the right side

of the implication is satisfied. ❑

2020

Lecture 4: Associating Narrowing Functions to Constraints 23

Constraint Newton Method

x2

x1

x1 = 0 x1 = x2

B

0 0.5 1.5

0.5

1.5

x
1

(B) = {0} [0.5..1.5]

x
2

(B) = [0.5..1.5]

c x1(x2-x1) = 0

P = (X,D,C) = (<x1,x2>,D1D2,{c})

D1=[-1..3] D2 =[-0.5..2]

B =<[-0.5..2.5],[0.5..1.5]>

 = { <x1,x2>D | x1(x2-x1) = 0 }

c = (<x1,x2>,)

r[-0.5,2.5] rx1

(B) v [r]([0.5..1.5]-[r]): v=0

Properties of an Interval Projection

x1

B x1([0.5..1.5]-x1)

x2

B [-0.5..2.5](x2-[-0.5..2.5])

r[0.5,1.5] rx2

(B) v [-0.5..2.5]([r]-[-0.5..2.5]): v=0

2020

Lecture 4: Associating Narrowing Functions to Constraints 24

Constraint Newton Method

Projection Function Enclosure with the Interval Projection

The strategy used in the constraint Newton method is to search for

the leftmost and the rightmost elements of the original variable

domain satisfying the interval projection condition

Projection Function Enclosure based on the Interval Projection. Let P=(X,D,C) be a

CCSP. Let c=(s,)C be an n-ary constraint, B an n-ary F-box and xi an element of s. Let

a and b be respectively the leftmost and the rightmost elements of B[xi] satisfying the

interval projection condition. The following property necessarily holds:

xi

(B) [a..b] ❑

What is needed is a function, denoted narrowBounds, with the

following property:

xi

(B) [a..b] narrowBounds(B[xi])

2020

Lecture 4: Associating Narrowing Functions to Constraints 25

Constraint Newton Method

Projection Function Enclosure with the Interval Projection

To obtain a new bound, the projection condition is firstly verified

in the extreme of the original domain and only in case of failure

the leftmost (rightmost) zero of the interval projection is searched

function narrowBounds(an F-interval [a..b])

 (1) if a = b then if intervalProjCond([a]) then return [a] else return ; end if; end if;

 (2) if not intervalProjCond([a..a+]) then a searchLeft([a+..b]);
 (3) if a = then return ;
 (4) if a = b then return [b];

 (5) if not intervalProjCond([b-..b]) then b searchRight([a..b-]);
 (6) return [a..b];

end function

In case of failure of an inequality condition, it assumes that the

leftmost (rightmost) element satisfying the interval projection

condition must be a zero of the interval projection

2020

Lecture 4: Associating Narrowing Functions to Constraints 26

Constraint Newton Method

Projection Function Enclosure with the Interval Projection

The verification if the interval projection condition is satisfied in a

canonical interval is straightforward

function intervalProjCond(a canonical F-interval I)

 (1) [a..b] xi

B

(I);

 (2) case ⋄ of

 (3) “=”: return 0[a..b];

 (4) “”: return a0;

 (5) “”: return b0;

 (6) end case;

end function

2020

Lecture 4: Associating Narrowing Functions to Constraints 27

Constraint Newton Method

Projection Function Enclosure with the Interval Projection

The algorithm for searching for the leftmost zero of an interval

projection uses a Newton Narrowing function (NN) associated

with the interval projection for reducing the search space

function searchLeft(an F-interval I)

 (1) Q {I};

 (2) while Q do

 (3) choose I1 Q with the smallest left bound (IQ left(I1) left(I));

 (4) Q Q \ {I1};

 (5) if 0xi

A

(I1) then

 (6) I1 NN(I1);

 (7) if I1 then

 (8) I0 cleft(I1); I1 [right(I0)..right(I1)];

 (9) if 0xi

B

(I0) then return left(I0);

 (10) else Q Q {[left(I1)..center(I1)], [center(I1) ..right(I1)]}; end if;

 (11) end if;

 (12) end if;

 (13) end while;

 (14) return ;

end function

2020

Lecture 4: Associating Narrowing Functions to Constraints 28

Constraint Newton Method

x2

x1

x1 = 0 x1 = x2

B

0 0.5 1.5

0.5

1.5

x
1

(B) = {0} [0.5..1.5]

x
2

(B) = [0.5..1.5]

c x1(x2-x1) = 0

P = (X,D,C) = (<x1,x2>,D1D2,{c})

D1=[-1..3] D2 =[-0.5..2]

B =<[-0.5..2.5],[0.5..1.5]>

 = { <x1,x2>D | x1(x2-x1) = 0 }

c = (<x1,x2>,)

Narrowing the domain of variable x1: narrowBounds([-0.5,2.5])

Example

x1

B x1([0.5..1.5]-x1)

x2

B [-0.5..2.5](x2-[-0.5..2.5])

intervalProjCond([-0.5,-0.499]) → False 0x1

B([-0.5,-0.499])=[-1,-0.499]

2020

18 March 2011 Lecture 4: Associating Narrowing Functions to Constraints 29

Constraint Newton Method

x2

x1

x1 = 0 x1 = x2

B

0 0.5 1.5

0.5

1.5

x
1

(B) = {0} [0.5..1.5]

x
2

(B) = [0.5..1.5]

c x1(x2-x1) = 0

P = (X,D,C) = (<x1,x2>,D1D2,{c})

D1=[-1..3] D2 =[-0.5..2]

B =<[-0.5..2.5],[0.5..1.5]>

 = { <x1,x2>D | x1(x2-x1) = 0 }

c = (<x1,x2>,)

Example

x1

B x1([0.5..1.5]-x1)

x2

B [-0.5..2.5](x2-[-0.5..2.5])

searchLeft([-0.499..2.5])

Q={I1,...,In} 0x
i

B

(I1) NN(I1) 0x
i

B

(I0)

{[-0.499..2.5]} 0[-5..4.998] [-0.499..2.5] 0[-0.998.. -0.497]

{[-0.498..1.001],[1.001..2.5]} 0[-0.995..2] [-0.498..1.001] 0[-0.997.. -0.496]

{[-0.497..0.252],[0.252..1.001],[1.001..2.5]} 0[-0.992..0.504] [0..0.001] 0[0..0.002]

 return 0

 2020 Lecture 4: Associating Narrowing Functions to Constraints 29

Lecture 4: Associating Narrowing Functions to Constraints 30

Constraint Newton Method

x2

x1

x1 = 0 x1 = x2

B

0 0.5 1.5

0.5

1.5

x
1

(B) = {0} [0.5..1.5]

x
2

(B) = [0.5..1.5]

c x1(x2-x1) = 0

P = (X,D,C) = (<x1,x2>,D1D2,{c})

D1=[-1..3] D2 =[-0.5..2]

B =<[-0.5..2.5],[0.5..1.5]>

 = { <x1,x2>D | x1(x2-x1) = 0 }

c = (<x1,x2>,)

Example

x1

B x1([0.5..1.5]-x1)

x2

B [-0.5..2.5](x2-[-0.5..2.5])

Proceeding similarly for the upper bound of x1, the best narrowing is

obtained:
B’=<[0.0,1.501],[0.5,1.0]>

B’

2020

Lecture 4: Associating Narrowing Functions to Constraints 31

Revise Procedures

The revise procedures are algorithms that from one constraint

contract concurrently the domains of all the variables of its scope

These are efficient implementations and variations of the generic

methods presented before and are the basic building blocks of any

continuous constraint solver library

2020

• HC3-Revise implements the decomposition method

• BC3-Revise implements the constraint Newton method

• HC4-Revise is an algorithm that obtains the results of the

decomposition method considering the original constraint rather

than primitives generated by decomposition

• Mohc-Revise is an algorithm that exploits monotonicity of

functions to improve contraction using monotonic versions of

HC4-Revise and BC3-Revise.

Lecture 4: Associating Narrowing Functions to Constraints 32

Revise Procedures

2020

A constraint is represented by a tree where the root node contains the

relation symbol, and terms are composed of nodes containing either a

variable, a constant, or an operation symbol.

HC4-Revise

Example: 𝑥1 × 𝑥2 − 𝑥1 = 0

=

−𝑥1

𝑥1𝑥2

× 0

Lecture 4: Associating Narrowing Functions to Constraints 33

Revise Procedures

2020

The algorithm proceeds in two consecutive stages:

1. Forward evaluation is a traversal of the terms from leaves to roots to

evaluate the natural interval extension of every sub-term

HC4-Revise

Example: 𝑥1 × 𝑥2 − 𝑥1 = 0

=

−𝑥1

𝑥1𝑥2

× 0

𝐵 = [0.25,1] × [0.5,1.5]with:

[0.25,1]

[0.5,1.5] [0.25,1]

[−0.5,1.25]

[−0.5,1.25]

[0,0]

Lecture 4: Associating Narrowing Functions to Constraints 34

Revise Procedures

2020

The algorithm proceeds in two consecutive stages:

2. Backward propagation is a traversal from root to leaves to evaluate at

each node a projection narrowing operator associated its father

HC4-Revise

Example: 𝑥1 × 𝑥2 − 𝑥1 = 0

=

−𝑥1

𝑥1𝑥2

× 0

𝐵 = [0.25,1] × [0.5,1.5]with:

[0.25,1]

[0.5,1.5] [0.25,1]

[−0.5,1.25]

[−0.5,1.25]

[0,0]

[0,0]

[0,0]

[0.5,1] [0.5,1]

Lecture 4: Associating Narrowing Functions to Constraints 35

Revise Procedures

2020

The algorithm proceeds in two consecutive stages:

1. Forward evaluation is a traversal of the terms from leaves to roots to

evaluate the natural interval extension of every sub-term

HC4-Revise

Example: 𝑥1 × 𝑥2 − 𝑥1 = 0

=

−𝑥1

𝑥1𝑥2

× 0

𝐵 = [−1,−0.25] × [0.5,1.5]with:

[−1,−0.25]

[0.5,1.5] [−1, −0.25]

[0.75,2.5]

[−2.5, −0.1875]

Ø

Lecture 4: Associating Narrowing Functions to Constraints 36

Narrowing functions for systems of constraints

Instead of associating narrowing functions with each single

constraint it is possible to associate it with multiple constraints

2020

Alternatively, variations of the method exist for non-square

systems and for inequality constraints

Box-k Revise: The method is applied to a subsystems of k CCSP

equations (to make it square)

One possibility is the direct application of the interval Newton

method to a square system of equations (see lecture3)

Acts like a global constraint that performs powerful contraction

when the domains become small enough

Can prove rigorously the existence of a solution of a well

constrained system of equations

Multivariate Interval Newton

Lecture 4: Associating Narrowing Functions to Constraints 37

Narrowing functions for systems of constraints

Some techniques linearize the nonlinear system and use the

efficient linear algorithms (e.g. Simplex) to narrow the domains

2020

Is a technique developed for methods dedicated to quadratic non-

convex problems

Reformulation-Linearization

Each non linear term is replaced by a new variable and redundant

linear constraints are introduced

Lecture 4: Associating Narrowing Functions to Constraints 38

Narrowing functions for systems of constraints

Some techniques linearize the nonlinear system and use the

efficient linear algorithms (e.g. Simplex) to narrow the domains

2020

Reformulation-Linearization

Lecture 4: Associating Narrowing Functions to Constraints 39

Narrowing functions for systems of constraints

Some techniques linearize the nonlinear system and use the

efficient linear algorithms (e.g. Simplex) to narrow the domains

2020

Is a technique developed for methods dedicated to quadratic non-

convex problems

Reformulation-Linearization

Each non linear term is replaced by a new variable and redundant

linear constraints are introduced

Use of a Linear Programming algorithm to narrow the domain of

each variable and update the coefficients of these linear constraints

Quad-algorithm: works on the relaxations of the nonlinear terms of

the constraint system whereas a Box-consistency algorithm works

on the initial constraint system

Lecture 4: Associating Narrowing Functions to Constraints 40

Narrowing functions for systems of constraints

Some techniques linearize the nonlinear system and use the

efficient linear algorithms (e.g. Simplex) to narrow the domains

2020

Is a technique that uses affine arithmetic (an extension of interval

arithmetic) to generate linear relaxations.

Linear relaxation based on affine arithmetic

It produces a polytope by replacing in the constraint expressions

every basic operator by specific affine forms

Lecture 4: Associating Narrowing Functions to Constraints 41

Narrowing functions for systems of constraints

Some techniques linearize the nonlinear system and use the

efficient linear algorithms (e.g. Simplex) to narrow the domains

2020

Is a technique that uses affine arithmetic (an extension of interval

arithmetic) to generate linear relaxations.

Linear relaxation based on affine arithmetic

Lecture 4: Associating Narrowing Functions to Constraints 42

Narrowing functions for systems of constraints

Some techniques linearize the nonlinear system and use the

efficient linear algorithms (e.g. Simplex) to narrow the domains

2020

Is a technique that uses affine arithmetic (an extension of interval

arithmetic) to generate linear relaxations.

Linear relaxation based on affine arithmetic

It produces a polytope by replacing in the constraint expressions

every basic operator by specific affine forms

IBBA-algorithm: An interval Branch and Bound algorithm where

the technique is integrated with other pruning methods

Lecture 4: Associating Narrowing Functions to Constraints 43

Narrowing functions for systems of constraints

Some techniques linearize the nonlinear system and use the

efficient linear algorithms (e.g. Simplex) to narrow the domains

2020

Is a technique that produces a polytope by selecting the two

corners of the interval Taylor form instead of the usual midpoint

Corner-based Taylor relaxation

Lecture 4: Associating Narrowing Functions to Constraints 44

Narrowing functions for systems of constraints

Some techniques linearize the nonlinear system and use the

efficient linear algorithms (e.g. Simplex) to narrow the domains

2020

Is a technique that produces a polytope by selecting the two

corners of the interval Taylor form instead of the usual midpoint

Corner-based Taylor relaxation

It uses two opposite corners of the domain for every constraint

Polytope-Hull: Is a contractor that with two calls to an LP solver

computes the minimum and maximum values in this polytope for

each of the variables

X-Newton: Is a contractor based on this technique that can treat

well-constrained systems as well as under-constrained ones (with

fewer equations than variables and with inequalities)

