
10 October 2019 Constraint Programming 0

Constraint Programming

- An overview

• Global Constraints in Choco (2)

• Scheduling Constraints

• Redundant Constraints

• Resource Management Constraints

10 October 2019 Constraint Programming 1

Scheduling Constraints

- We start discussing a simple scheduling problem and the pitfalls with reasoning with
constraints separately.

S0/2

S2/3S1/4

S3/1

Example:

A project is composed of the four tasks illustrated in the
graph, showing precedence between them, as well as
mutual exclusion («). The tasks duration are shown in
the nodes.

- The problem may be modelled by the following
precedence and disjunctive constraints, where

- s[i] denotes the start time of task i;

- d[i] denotes the duration of task i;

(s[1] >= s[0]+d[0])
(s[2] >= s[0]+d[0]);
(s[3] >= s[1]+d[1]);
(s[3] >= s[2]+d[2]);
(s[2] >= s[1]+d[1] || s[1] >= s[2]+d[2]); }

10 October 2019 Constraint Programming 2

Redundant Constraints

- Because task 0 (that we assume starts at 0) and both tasks 1 and 2, must be
finished before task 3 starts, and because these tasks have durations 2, 4 and 3
respectively, task 3 may only start at time

s[3] >= 0+2+3+4 = 9

which should fix its value to 9. However, because the disjunction is dealt separately
from the precedence constraints, the only propagation that is obtained is

s[3] >= 0+2+4 = 6 and s[3] >= 0+2+3 = 5

Assuming all tasks should start until time 9, the domain of s[3] is narrowed to 6..9
rather than fixed to 9.

(s[1] >= s[0]+d[0])
(s[2] >= s[0]+d[0]);
(s[3] >= s[1]+d[1]);
(s[3] >= s[2]+d[2]);
(s[2] >= s[1]+d[1] || s[1] >= s[2]+d[2]);

S0/2

S2/3S1/4

S3/1

10 October 2019 Constraint Programming 3

Cumulative Constraints

- In Choco, the previous example can be encoded as follows:

- First the classes to import, a model is created with its solver, and the instance data
is specified.

package choco;
import org.chocosolver.solver.Model;
import org.chocosolver.solver.variables.IntVar;
import org.chocosolver.solver.Solver;

public class tabling {
public static void main(String[] args) {

Model md = new Model("table test");
Solver sv = md.getSolver();
IntVar [] s = md.intVarArray(”S", 4, 0, 9);
int [] d = {2,4,3,1};
int [] h = {1,1,1,1}
int cap = 1;
....

}
}

S0/2

S2/3S1/4

S3/1

10 October 2019 Constraint Programming 4

Cumulative Constraints

- Then the precedence and non-overlapping constraint are specified.

....
public class tabling {

public static void main(String[] args) {
....
// precedence constraints
md.arithm(s[1], “>=”, s[0], “+”, d[0]).post();
md.arithm(s[2], “>=”, s[0], “+”, d[0]).post();
md.arithm(s[3], “>=”, s[1], “+”, d[1]).post();
md.arithm(s[3], “>=”, s[2], “+”, d[2]).post();

// no overlap constraints
md.or (

md.arithm(s[2], “>=”, s[1], “+”, d[1]),
md.arithm(s[1], “>=”, s[2], “+”, d[2])

).post();
....

}
}

S0/2

S2/3S1/4

S3/1

10 October 2019 Constraint Programming 5

Redundant Constraints

- In general, the interaction of many constraints may not be adequately processed by
the corresponding propagators separately.

- Whenever the pitfalls of such interaction are identified, one technique that might be
used is the inclusion of redundant constraints.

- Such constraints do not add to the semantics of the programs, i.e. the programs with
and without them are equivalent. However, they add to the efficiency of constraint
processing, improving its pruning, and therefore leading to a more efficient search.

- In scheduling problems, these redundant constraints, aim at improving the beginning
and ending of the tasks (edge-finding).Two simple cases are

- when k non-overlapping tasks Xi antecede some task Z the following redundant
constraint can be added

sz >= min { min(s1), min(s2),, min(sk) } + d1 + d2 + ... + dk

- when k non-overlapping tasks Xi succeed some task Z the following redundant
constraint can be added

sz + dz <= max { max(s1), max(s2),, max(sk) } - d1 - d2 - ... - dk

10 October 2019 Constraint Programming 6

Cumulative Constraints

- In general, edge-finding requires more sophisticated techniques, namely in problems
combining scheduling and resource management.

- In fact, if many units of a resource are available, then more than one of the tasks that
use these resources may execute simultaneously. All that is needed is that the
number of resources required at any given time does not exceed the existing
resources.

- This is the semantics of the cumulative constraint, initially introduced in CHIP, and
which had an enormous impact in the area of constraint programming.

- Let S be the set of starting times of n tasks si, D be the set of their durations di and
R the set of the number of resources of a given type required by the tasks, ri.
Denoting by

a = mini(si) ; b = maxi(si+di);
ri,k = ri if si =< tk =< si+di or 0 otherwise.

then
cumulative(S,D,R,L) Û " S ri,k £ L

k Î [a,b] i

10 October 2019 Constraint Programming 7

Cumulative Constraints

- In Choco there are many options to specify a cumulative constraint. Possibly, the
simplest fom of specifying a cumulative constraint on n tasks, is

cumulative(IntVar[] starts, int[] durations, int[] heights, int capacity)

- where
• IntVar[] starts: denote the start of the tasks (a decision array);
• int [] duration: denote the duration of each task (an integer array);
• int [] heights: denotes the resource consumption of each task (an integer array);
• int capacity: total amount of resources available at each time point (an integer).

- This specification creates a cumulative constraint, that enforces that at each point
in time, the cumulated height of the set of tasks that overlap that point does not
exceed a given limit.

10 October 2019 Constraint Programming 8

Cumulative Constraints

- In this case, as there are only two non-overlapping tasks (1 and 2, the others do not
overlap due to precedence constraints), the non overlapping constraint can be
imposed with a cumulative constraint on these variables, as follows:

- Of course, in this toy example the cumulative constraint is not worth using. But this
is not the case for hard job-shop problems.

....
public class tabling {

public static void main(String[] args) {
....
// precedence constraints
....
// no overlap constraints
//md.or (....).post();
IntVar [] nover = md.intVarArray(2,1,9);
nover[0] = s[1];
nover[1] = s[2];
md.cumulative(nover, new int [] {d[1],d[2]}, new int [] {h[1],h[2]}, cap);
....

}
}

S0/2

S2/3S1/4

S3/1

10 October 2019 Constraint Programming 9

Cumulative Constraints: Job Shop

- The job shop problem consists of executing the different tasks of several jobs without
exceeding the available resources.

- Within each job, there are several tasks, each with a duration. Within each job, the
tasks have to be performed in sequence, possibly respecting mandatory delays
between the end of a task and the start of the following task.

- Tasks of different jobs are independent, except for the sharing of common resources
(e.g. machines). Each task must be executed in one machine of a certain type. The
number of machines is the same as the number of tasks in each job.

- A simple instance of the problem (with 3 machines) is given in the table below (with
the corresponding graphic representation).

J1

J2

J3

J4

1 2 3

1 2 3

1 2 3

1 2 3

Z, D 0 1 2
0 0 , 2 1 , 4 2 , 7
1 2 , 3 1 , 4 0 , 5
2 0 , 5 1 , 3 2 , 3
3 1 , 3 2 , 4 0 , 4

J
o
b
s
X

Tasks Y

10 October 2019 Constraint Programming 10

Cumulative Constraints: Job Shop

- This instance below (tasks and jobs start at 1, not 0) was proposed in the book
Industrial Scheduling [MuTh63]. For 20 years no solution was found that optimised
the “makespan”, i.e. the fastest termination of all tasks.

- Around 1980, the best solution was 935 (time units). In 1985, the optimum was
lower bounded to 930. In 1987 the problem was solved with a highly specialised
algorithm, that found a solution with makespan 930.

- With the cumulative/4 constraint, in the early 1990’s, the problem was solved in
1506 seconds (in a SUN/SPARC workstation).

Z, D 1 2 3 4 5 6 7 8 9 a
1 1, 29 2, 78 3, 9 4, 36 5, 49 6, 11 7, 62 8, 56 9, 44 a, 21
2 1, 43 3, 90 5, 75 a, 11 4, 69 2, 28 7, 46 6, 46 8, 72 9, 30
3 2, 91 1, 85 4, 39 3, 74 9, 90 6, 10 8, 12 7, 89 a, 45 5, 33
4 2, 81 3, 95 1, 71 5, 99 7, 9 9, 52 8, 85 4, 98 a, 22 6, 43
5 3, 14 1, 6 2, 22 6, 61 4, 26 5, 69 9, 21 8, 49 a, 72 7, 53
6 3, 84 2, 2 6, 52 4, 95 9, 48 a, 72 1, 47 7, 65 5, 6 8, 25
7 2, 46 1, 37 4, 61 3, 13 7, 32 6, 21 a, 32 9, 89 8, 30 5, 55
8 3, 31 1, 86 2, 46 6, 74 5, 32 7, 88 9, 19 a, 48 8, 36 4, 79
9 1, 76 2, 69 4, 76 6, 51 3, 85 a, 11 7, 40 8, 89 5, 26 9, 74
a 2, 85 1, 13 3, 61 7, 7 9, 64 a, 76 6, 47 4, 52 5, 90 8, 45

Tasks Y

J
o
b
s

X

10 October 2019 Constraint Programming 11

Cumulative Constraints: Job Shop

- Because the job shop problem is so relevant, Choco provides a class, Tasks, with 3
components, start, duration and end, maintaining the implicit constraint

start + duration = end

- For this class, a more sophisticated cumulative constraint can be used

cumulative(tasks, heights, capacity, graphBased, cum)

- where
• Tasks [] tasks: denote the set of non-overlapping tasks;
• int [] heights: resources consumed by each task (an integer array);
• int capacity: total amount of resources available at each time point (an integer).
• boolean graphBased: a parameter indicating how to filter
o true: applies on subset of overlapping tasks
o false: applies on all tasks

• Cumulative.Filter cum: a cumulative filter specifying the algorithm to filter
• possible values are TIME / SWEEP / NRJ

10 October 2019 Constraint Programming 12

Cumulative Constraints: Job Shop

- The proposed program to solve the job-shop problem imports two classes in this
case, for the tasks and fo the cumulative constraint to be used.

package choco;

import org.chocosolver.solver.Model;
import org.chocosolver.solver.Solver;
import org.chocosolver.solver.variables.IntVar;
import org.chocosolver.solver.variables.Task;
import org.chocosolver.solver.constraints.nary.cumulative.Cumulative;

public class job_shop {

public static void main(String[] args) {
Model md = new Model("(" + 4 +"," + 3 + ") - Job Shop");
Solver sv = md.getSolver();
....

}
}

10 October 2019 Constraint Programming 13

Cumulative Constraints: Job Shop

- Now the instance is defined (number of jobs, tasks and machines)

- An upper bound for the start times and the make span is defined.

- The instances of the tasks are created with the bounds for the starting times and
durations and machines of each task.

....
int njobs = 4;
int ntsks = 3;
int nmchs = ntsks;
int maxStrt = 20;
int maxSpan = 30;
int [][] durs = {{2,4,7},{3,4,5},{5,3,3},{3,4,4}};
int [][] mchs = {{0,1,2},{2,1,0},{0,1,2},{1,2,0}};

Task [][] tx = new Task[njobs][ntsks];
for(int i = 0; i < njobs; i++){

for (int j = 0; j < ntsks; j++){
tx[i][j] = new Task(md.intVar(1,maxStrt),

md.intVar(durs[i][j],durs[i][j]),
md.intVar(1, maxSpan));

}
}
....

Z, D 0 1 2
0 0 , 2 1 , 4 2 , 7
1 2 , 3 1 , 4 0 , 5
2 0 , 5 1 , 3 2 , 3
3 1 , 3 2 , 4 0 , 4

J
o
b
s
X

Tasks Y

10 October 2019 Constraint Programming 14

Cumulative Constraints: Job Shop

- Now the precedence constraints are posted.

- Moreover, the overall makespan of the instance is the maximum of the end times of
all the last tasks of each job.

- This makespan is set as the objective to minimise.

....
// precedence constraints
for (int i = 0; i < njobs; i++) {

for (int j = 0; j < ntsks-1; j++) {
md.arithm(tx[i][j].getEnd(), "<=", tx[i][j+1].getStart()).post();

}
}

// set objective
IntVar [] lx = md.intVarArray(njobs,1,maxSpan);
IntVar last = md.intVar(1,maxSpan);
for (int i = 0; i < njobs; i++)

lx[i] = tx[i][ntsks-1].getEnd();
md.max(last, lx).post();
md.setObjective(Model.MINIMIZE, last);
....

Z, D 0 1 2
0 0 , 2 1 , 4 2 , 7
1 2 , 3 1 , 4 0 , 5
2 0 , 5 1 , 3 2 , 3
3 1 , 3 2 , 4 0 , 4

J
o
b
s
X

Tasks Y

10 October 2019 Constraint Programming 15

Cumulative Constraints: Job Shop

- A cumulative constraint should be posted for each machine.

- Hence, the tasks executed in each machine are obtained from the specification, and
made correspond to the previously defined tasks.

....
Task [][] mx = new Task[nmchs][njobs];
for (int k = 0; k < nmchs; k++){

int p = 0;
for(int i = 0; i < njobs; i++){

for (int j = 0; j < ntsks; j++){
if(mchs[i][j] == k){

mx[k][p] = tx[i][j] ;
p = p + 1;

}
}

}
}
....

Z, D 0 1 2
0 0 , 2 1 , 4 2 , 7
1 2 , 3 1 , 4 0 , 5
2 0 , 5 1 , 3 2 , 3
3 1 , 3 2 , 4 0 , 4

J
o
b
s
X

Tasks Y

10 October 2019 Constraint Programming 16

Cumulative Constraints: Job Shop

- Finally the cumulative constraint is posted.

- Notice that an instance of the Cumulative.Filter must be created to be used as the
last paramenter of the cumulative constraints.

- The solutions are now obtained with decreasing value of the objective value.

....
// precedence constraints
Cumulative.Filter cum = Cumulative.Filter.SWEEP; //TIME, SWEEP, ...
boolean graphBased = true;
IntVar one = md.intVar(1,1);
IntVar [] ones = md.intVarArray(njobs,1,1);
for (int k = 0; k < nmchs; k++)

md.cumulative(mx[k], ones, one, graphBased, cum).post();

while (sv.solve()){
// show solutions

}
}

}

Z, D 0 1 2
0 0 , 2 1 , 4 2 , 7
1 2 , 3 1 , 4 0 , 5
2 0 , 5 1 , 3 2 , 3
3 1 , 3 2 , 4 0 , 4

J
o
b
s
X

Tasks Y

10 October 2019 Constraint Programming 17

Cumulative Constraints: Job Shop
Solving (4,3) - Job Shop (solution 1); with Makespan = 24
--- Jobs ---
1 to 3; 4 to 8; 17 to 24;
1 to 4; 11 to 15; 15 to 20;
3 to 8; 8 to 11; 14 to 17;
1 to 4; 4 to 8; 8 to 12;
--- Machines ---
1 to 3; 15 to 20; 3 to 8;
4 to 8; 11 to 15; 8 to 11;
17 to 24; 1 to 4; 14 to 17;
Solving (4,3) - Job Shop (solution 2); with Makespan = 20
--- Jobs ---
1 to 3; 4 to 8; 8 to 15;
1 to 4; 11 to 15; 15 to 20;
3 to 8; 8 to 11; 15 to 18;
1 to 4; 4 to 8; 8 to 12;
--- Machines ---
1 to 3; 15 to 20; 3 to 8;
4 to 8; 11 to 15; 8 to 11;
8 to 15; 1 to 4; 15 to 18;
Solving (4,3) - Job Shop (solution 3); with Makespan = 18
--- Jobs ---
1 to 3; 4 to 8; 8 to 15;
1 to 4; 8 to 12; 12 to 17;
3 to 8; 12 to 15; 15 to 18;
1 to 4; 4 to 8; 8 to 12;
--- Machines ---
1 to 3; 12 to 17; 3 to 8;
4 to 8; 8 to 12; 12 to 15;
8 to 15; 1 to 4; 15 to 18;

!!! No (more) solutions after 0.03997849 secs

Z, D 0 1 2
0 0 , 2 1 , 4 2 , 7
1 2 , 3 1 , 4 0 , 5
2 0 , 5 1 , 3 2 , 3
3 1 , 3 2 , 4 0 , 4

J
o
b
s
X

Tasks Y

10 October 2019 Constraint Programming 18

Job Scheduling

- In the job shop problem, every task requires the use of a single machine. Because
several tasks use the same machine the cumulative constraint effectively enforces a
schedule with non-overlapping of the tasks using the same machine.

- However, there are situations where a task does not use all the resources available.

- For example, a company may have several workers that should perform several
tasks, that do not require all the works at the same time, as shown in the following
example.

- In this case, there are 7 tasks, each with a duration d[i] (let us assume the time
unit to be days), when performed by a number r[i] of workers.

d = [2 , 4 , 3 , 2 , 1 , 2 , 2] ; w = [4 , 1 , 3 , 1 , 2 , 3 , 2]

10 October 2019 Constraint Programming 19

Job Scheduling

Example:

Take 7 tasks (A a G) with the duration and resource consumption (e.g. number of
workers needed to carry them out) specified in the following arrays

d = [2 , 4 , 3 , 2 , 1 , 2 , 2] ; w = [4 , 1 , 3 , 1 , 2 , 3 , 2]

Graphically, the tasks can be viewed as

Goal: Assuming there are maxR resources (e.g. workers) available at all times

(Sat) Find whether the tasks may all be finished in a given due time maxT;

(Opt) Find the minimum due time maxT (make span)

- This problem may still be modelled by the cumulative constraint, but now the
parameter heights should reflect the different requirement of resources (workers)
that each task require.

10 October 2019 Constraint Programming 20

Cumulative Constraints: Job Scheduling

- The code that can be used to solve the problem is shown next.

- First, the import statements and class signatures are defined,

- as well as the model and solver classes

- and problem specific parameters.

package choco;

import org.chocosolver.solver.Model;
import org.chocosolver.solver.Solver;
import org.chocosolver.solver.variables.IntVar;
import org.chocosolver.solver.variables.Task;
import org.chocosolver.solver.constraints.nary.cumulative.Cumulative;

public class job_schedule {
public static void main(String[] args) {

Model md = new Model("Job Schedule");
Solver sv = md.getSolver();
int n = 7;
boolean flexible = true; // allow flexible tasks
.....

}
}

10 October 2019 Constraint Programming 21

Cumulative Constraints: Job Scheduling

- Now, the dimensions of the tasks are defined,

- and converted into decision variables.

.....
int maxT = 5; // 9, 7, 5, 4
int maxR = 7; // 4, 5, 7, 9

int [] days = {2 , 4 , 3 , 2 , 1 , 2 , 2};
int [] wrks = {4 , 1 , 3 , 1 , 2 , 3 , 2};

IntVar [] d = md.intVarArray(n, 1, 100);
IntVar [] w = md.intVarArray(n, 1, 100);
if (flexible){

for(int i = 0; i < n; i++)
md.arithm(d[i], "*", w[i], "=", days[i]*wrks[i]).post();

} else {
for(int i = 0; i < n; i++){

md.arithm(d[i], "=", days[i]).post();
md.arithm(w[i], "=", wrks[i]).post();

}
}
.....

d = [2 , 4 , 3 , 2 , 1 , 2 , 2] ; w = [4 , 1 , 3 , 1 , 2 , 3 , 2]

10 October 2019 Constraint Programming 22

Cumulative Constraints: Job Scheduling

- Finally the tasks are defined,

- the makeSpan is also set to be the maximum end of all the tasks, and

- the cumulative constraint is posted, with the parameters seen before.

.....
Task [] tx = new Task[n];
for(int i = 0; i < n; i++){

tx[i] = new Task(md.intVar(1,maxT+1),d[i], md.intVar(1,maxT+1));
}
// set makeSpan
IntVar [] lx = md.intVarArray(n,1,maxT+1);
IntVar makeSpan = md.intVar(1,maxT);
for (int i = 0; i < n; i++)

md.arithm(lx[i], "=", tx[i].getEnd(), "-", 1).post();
md.max(makeSpan, lx).post();

}
IntVar maxH = md.intVar(maxR,maxR);
Cumulative.Filter cum = Cumulative.Filter.SWEEP; //TIME, SWEEP, ...
boolean graphBased = true;
md.cumulative(tx, w, maxH, graphBased, cum).post();
.....

10 October 2019 Constraint Programming 23

Cumulative Constraints: Job Scheduling

- Finally the objective is set (i.e. minimise the make span – not used here)

- And the solutions (if any) are displayed).

.....

// set objective
// md.setObjective(Model.MINIMIZE, makeSpan);

while (sv.solve()){
System.out.print("Solving " + sv.getModelName() + " (solution " +

sv.getSolutionCount() + ");");
System.out.println(" with Makespan = " + makeSpan.getValue());
System.out.println("--- Start and End Times ---");
for(int i = 0; i< n; i++){

System.out.print(" " + tx[i].getStart().getValue() + " to " +
(tx[i].getEnd().getValue()-1)+"; ");

}
System.out.println();

}
System.out.println("\n !!! No (more) solutions after " + sv.getTimeCount() +

" secs");
}

}

10 October 2019 Constraint Programming 24

Cumulative Constraints

Some Results:

- With maxR = 4 (4 resource units available) and imposing that all tasks finish no
later than time 9 (note: task.getEnd = 9+1) a number of answers are obtained,
(allowing one of the 6 workers to rest for one hour) namely

4 5 5 2 2 2 3 4 0 0

3 5 5 2 2 2 4 0 0

2 5 5 2 2 2 6 6 0 0

1 1 1 1 1 3 6 6 0 0

1 2 3 4 5 6 7 8 9

8 1 3 5 7 1 6

R

t
2 2 2 5 5 4 0 0

2 2 2 5 5 6 4 0 0

2 2 2 5 5 6 6 0 0

1 1 1 1 3 3 6 0 0

8 1 1 5 7 4 6

2 2 2 5 5 4 0 0

2 2 2 5 5 6 4 0 0

2 2 2 5 5 6 6 0 0

1 1 1 1 3 3 6 0 0

8 1 1 5 7 4 6

10 October 2019 Constraint Programming 25

Cumulative Constraints

Some Results:

- With maxR = 5 (5 resource units available) and imposing that all tasks finish no
later than time 7 (note: task.getEnd = 7+1) a number of answers are also obtained,
(this time not allowing any workers to rest) namely

1 1 1 1 6 6 4

0 0 3 3 6 6 4

0 0 2 2 2 5 5

0 0 2 2 2 5 5

0 0 2 2 2 5 5

1 1 3 3 7 6 5

1 1 1 1 6 6 4

5 5 0 0 6 6 4

5 5 0 0 2 2 2

5 5 0 0 2 2 2

3 3 0 0 2 2 2

3 1 5 1 7 1 5

10 October 2019 Constraint Programming 26

Cumulative Constraints

Some Results:

- In general, we may want to trade time for resources, e.g. instead of fitting the whole
tasks is a rectangle of MaxT x MaxR , we may want to fit the tasks in a rectangle of
MaxT x MaxR.

- We found solutions for maxT = 7 and maxR = 5, namely

- However, there are no solutions with maxT = 7 and maxR = 5 !

1 1 1 1 6 6 4

0 0 3 3 6 6 4

0 0 2 2 2 5 5

0 0 2 2 2 5 5

0 0 2 2 2 5 5

1 1 3 3 7 6 5

1 1 1 1 6 6 4

5 5 0 0 6 6 4

5 5 0 0 2 2 2

5 5 0 0 2 2 2

3 3 0 0 2 2 2

3 1 5 1 7 1 5

10 October 2019 Constraint Programming 27

Job Scheduling

- Sometimes, the tasks are flexible, in that the duration of the task depends on the
number of workers used (for example a task requiring 4 workers-days might be
performed by

- 1 worker in 4 days;

- 2 workers in 2 days; or

- 4 workers in 1 day; or even

- 3 workers in 1 day and 1 worker in another day.

- All these situations can be modelled in Choco.

d = [2 , 4 , 3 , 2 , 1 , 2 , 2] ; w = [4 , 1 , 3 , 1 , 2 , 3 , 2]

10 October 2019 Constraint Programming 28

Cumulative Constraints

- In some applications, tasks are flexible, in the sense that time may be traded for
resources.

- Flexible tasks may be more easily accommodated within the resources (and time)
available, namely to solve instances of the problem that cannot be solved with fixed
tasks.

- Scheduling of this type of tasks may be specified very similarly to what was done
before.

- However, if before we could make the durations d and workers w used by each task
i to be constants

d[i] * w[i] = days[i] * wrks[i]

d[i] * w[i] = days[i] * wrks[i]

now they should simply be constrained to

d[i] * w[i] = days[i] * wrks[i]

- Cf. code provided, that controls this flexibility with a Boolean variable flexible.

10 October 2019 Constraint Programming 29

Cumulative Constraints: Job Scheduling

.....
int maxT = 5; // 9, 7, 5, 4
int maxR = 7; // 4, 5, 7, 9

int [] days = {2 , 4 , 3 , 2 , 1 , 2 , 2};
int [] wrks = {4 , 1 , 3 , 1 , 2 , 3 , 2};

IntVar [] d = md.intVarArray(n, 1, 100);
IntVar [] w = md.intVarArray(n, 1, 100);
if (flexible){

for(int i = 0; i < n; i++)
md.arithm(d[i], "*", w[i], "=", days[i]*wrks[i]).post();

} else {
for(int i = 0; i < n; i++){

md.arithm(d[i], "=", days[i]).post();
md.arithm(w[i], "=", wrks[i]).post();

}
}
.....

d = [2 , 4 , 3 , 2 , 1 , 2 , 2] ; w = [4 , 1 , 3 , 1 , 2 , 3 , 2]

10 October 2019 Constraint Programming 30

Cumulative Constraints

Some Results:

- With maxT=7 and maxR=5 (previously impossible) there are now several solutions.
But notice, in the solution below, the “deeper” transformation in several tasks.

2 2 2 5 5

2 2 2 5 5

2 2 2 5 5

3 3 0 0 6

4 4 0 0 6

1 1 0 0 6

1 1 0 0 6

s 3 1 1 1 1 4 5
d 2 2 3 2 2 2 1
w 4 2 3 1 1 3 4

- Some tasks, simply change the number of workers for the
number of days.

- This is the case of tasks 4 and 6

- Other tasks may be more deeply changed, in that the very
“shape” of the task may be changed.

- This is the case of task 1, that changes its shape
from 1x4 to 2x2.

10 October 2019 Constraint Programming 31

Tiling Problems

- Several applications of great (economic) importance require the satisfaction of
tiling constraints, i.e. place a number of components in a given space, without
overlaps.

- Some of these applications include:

• Wood boards: a number of smaller pieces should be cut from large boards:

• Containers: Placement of boxes into a large container.

- In the first 2 problems the space to consider is 2D, whereas the third
problem is a typical 3D application. We will focus on 2D problems.

- An immediate parallelism can be drawn between these 2D problems and
those of scheduling, if the following correspondences are made:

- Time « the X dimension;

- Resources « the Y dimension;

- A task duration « the item X size (width);

- A task resource « the item Y size (height).

10 October 2019 Constraint Programming 32

Tiling Problems

Example:

Find the appropriate cuts to be made on a wood board of dimensions W * H so as
to obtain 11 rectangular pieces (A a K).

The various pieces to obtain have the following dimensions (width-w and height-h)
w = [1, 2, 1, 3, 1, 2, 4, 5, 2, 3, 3]
h = [2, 1, 3, 1, 4, 2, 1, 1, 3, 2, 3]

Graphically

and a cumulative constraint can be used as before, adapting durations to widths
and resources to heights.

D

B

K
A

C
E F

G

H

I
J

10 October 2019 Constraint Programming 33

Tiling Problems

- Unfortunately, the results obtained might not have a direct reading. For example,
one of the solutions obtained with an 8*6 rectangle is

x = [6, 7, 5, 1, 4, 5, 1, 1, 7, 6, 1]

That can be read as (???) or as

D

B

K
A

C
E F

G

H

I
J

D

G

I

BC
A

J
H

E

F
K

10 October 2019 Constraint Programming 34

Tiling Problems

- In fact, what we want here is that the rectangles do not overlap!

- The non overlapping of the rectangles defined by their x and y origins and their
widths w (x-sizes) and heights h (y-sizes) is guaranteed, as long as one of the
constraints below is satisfied (for rectangles i and j)

x[i]+w[i] <= x[j] rectangle i is left of rectangle j

x[j]+w[j] <= x[i] rectangle i is rigth of rectangle j

y[i]+h[i] <= y[j] rectangle i is below rectangle j

y[j]+h[j] <= y[i] rectangle i is above rectangle j

- As explained before, rather than committing to one of these conditions, and change
the commitment by backtracking, a better option is to adopt a least commitment
approach, for implementing such disjunctive constraint, as in

md.or(
md.arithm(x[i],”+", w[i], ”<=", x[j]),
md.arithm(x[j],”+", w[j], ”<=", x[i]),
md.arithm(y[i],”+", h[i], ”<=", h[j]),
md.arithm(y[j],”+", h[j], ”<=", h[i]),

.post();

10 October 2019 Constraint Programming 35

Tiling Problems

- Rather than using the disjunction constraint, a specialised global constraint diffN
achieves exactly the same purpose (i.e. the semantics is the same). Thus, instead
of using the disjunctive constraint over all rectangles

the global constraint diffN can be used as

to achieve the same goal

for (int i = 0; i < n; i++){
md.or(

md.arithm(x[i],”+", w[i], ”<=", x[j]),
md.arithm(x[j],”+", w[j], ”<=", x[i]),
md.arithm(y[i],”+", h[i], ”<=", h[j]),
md.arithm(y[j],”+", h[j], ”<=", h[i]),

.post();

md.diffN(x,y,w,h,true)

10 October 2019 Constraint Programming 36

Rediundant Constraints

- In fact, the global constraint used the disjunction constructively, and so may be
(slightly) more efficient in this case.

- For example if a situation is detected where

x < 5 or x > 10

then the global constraint infers that the values in the range 5..10 can be safely
removed from the domain of x.

- More importantly, although not strictly necessary, the cumulative constraints can
still be used, not only in the X dimension as before, but also in the Y dimension

• md.cumulative(x, w, h, maxW) and

• md.cumulative(y, h, w, maxY) and

- In fact, we do not need to impose these constraints, since the last parameter of the
diffN constraint, has exactly this purpose if set to true.

- In “hard” tiling problems, the efficiency is quite significant (solutions are found with
speed ups of several orders of magnitude).

md.diffN(x,y,w,h,true)

10 October 2019 Constraint Programming 37

Other Global Constraints

- Many other global constraints have been proposed for specific problems (a list of
200 is maintained in the Global Constraint Catalog

http://www.emn.fr/x-info/sdemasse/gccat/

- Most modern solvers (SICStus Prolog, GECODE, CHOCO, ZINC, ...) include
implementations of some of these global constraints. For example, the current
distribution of Zinc /Minizinc (1.6) has implementations of 55 global constraints

• alldifferent
• alldifferent_except_0
• all_disjoint
• all_equal
• among
• at_least (atleast)
• at_most (atmost)
• at_most1 (atmost1)
• bin_packing
• bin_packing_capa
• bin_packing_load
• circuit
• count_eq (count)
• count_geq
• count_gt
• count_leq
• count_lt
• count_neq
• cumulative

• decreasing
• diffn
• disjoint
• distribute
• element
• exactly
• global_cardinality
• global_cardinality_closed
• global_cardinality_low_up
• global_cardinality_low_up_closed
• increasing
• int_set_channel
• inverse
• inverse_set
• lex_greater
• lex_greatereq
• lex_less
• lex_lesseq
• lex2

• link_set_to_booleans
• maximum
• member
• minimum
• nvalue
• partition_set
• range
• regular
• roots
• sliding_sum
• sort
• strict_lex2
• subcircuit
• sum_pred (sum)
• table
• value_precede
• value_precede_chain

10 October 2019 Constraint Programming 38

Other Global Constraints

- Choco also provides a number of these constraints

as well as many others that can be checked in the IIntConstraintFactory.pdf.

• alldifferent
• alldifferent_except_0
• all_disjoint
• all_equal
• among
• at_least (atleast)
• at_most (atmost)
• at_most1 (atmost1)
• bin_packing
• bin_packing_capa
• bin_packing_load
• circuit
• count_eq (count)
• count_geq
• count_gt
• count_leq
• count_lt
• count_neq
• cumulative

• decreasing
• diffn
• disjoint
• distribute
• element
• exactly
• global_cardinality
• global_cardinality_closed
• global_cardinality_low_up
• global_cardinality_low_up_closed
• increasing
• int_set_channel
• inverse
• inverse_set
• lex_greater
• lex_greatereq
• lex_less
• lex_lesseq
• lex2

• link_set_to_booleans
• maximum
• member
• minimum
• nvalue
• partition_set
• range
• regular
• roots
• sliding_sum
• sort
• strict_lex2
• subcircuit
• sum_pred (sum)
• table
• value_precede
• value_precede_chain

IIntConstraintFactory.pdf

