
12 September 2019 Constraint Programming

Constraint Programming

- An overview

• Examples of decision (making) problems

• Declarative Modelling with Constraints

• Finite and Continuous Domains

• An Introduction to CHOCO

0

12 September 2019 Constraint Programming

Constraint Problems: Examples

- Decision Making Problems include:

§ Modelling of Digital Circuits

§ Production Planning

§ Network Management

§ Scheduling

§ Assignment (Colouring, Latin/ Magic Squares, Sudoku, Circuits, ...)

§ Assignment and Scheduling (Timetabling, Job-shop)

§ Filling and Containment

- Typically a problem may be represented by different models, some of which
may be more adequate (ease of modelling, efficiency of solving in a given
solver, etc)

1

12 September 2019 Constraint Programming

Modeling of Digital Circuits

Goal (Example): Determine a test pattern that detects some faulty gate

- Variables:
§ Signals in the circuit

- Domain:
§ Booleans: 0/1 (or True/False, or High/Low)

- Constraints:
§ Equality constraints between the output of a gate and its “boolean

operation” (e.g. and, or, not, nand, ...)

A

C

D

B

E

F

G

H

I

G1

G2

G3

G4

G5

E = or(A,B) % G1
F = nand(B,C) % G2
G = and(B,C) % G3
H = nand(E,F) % G4
I = nand(F,G) % G5

2

12 September 2019 Constraint Programming

Production Planning

Goal (Example): Determine a production plan

- Variables:
§ Quantities of goods to produce

- Domain:
§ Rational/Reals or Integers

- Constraints:
§ Equality and Inequality (linear) constraints to model resource limitations,

minimal quantities to produce, costs not to exceed, balance conditions,
etc...

Find x, y and z such that
4x+ 3y + 6z £ 1500 % resources used do not exceed 1500
x + y + z >= 300 % production not less than 300 units
x £ z + 20 % x units within z ± 20 units
x ³ z - 20
x, y, z ³ 0 % non negative production

3

12 September 2019 Constraint Programming

Network Management

Goal (Example): Determine acceptable traffic on a netwok

- Variables:
§ Flows in each edge

- Domain:
§ Rational/Reals (or Integers)

- Constraints:
§ Equality and Inequality (linear) constraints to model capacity limitations,

flow maintenance, costs, etc...

Find x,y,z, a,b,c,d,e such that
x ³ 6, z ³ 10 % minimum flow
a £ 5, ... , f £ 6 % capacity

% flow maintenance
x = a, y = b + c, a + b + d = e,
c = d + f, e + f = z
x, y ,z, a, b, c, d, e, f ³ 0

5/a

2/d
8/e

6/f

3/b

7/c

x

y

z

4

12 September 2019 Constraint Programming

Schedulling

Goal (Example): Assign timing/precedence to tasks

- Variables:
§ Start Timing of Tasks, Duration of Tasks

- Domain:
§ Rational/Reals or Integers

- Constraints:
§ Precedence Constraints, Non-overlapping constraints, Deadlines, etc...

Find Sa ,..., Se, such that
Sb ³ Sa+Ta, % precedence

....
(Sc ³ Sb+Tb) Ú (Sb ³ Sc+Tc) % non overlap

...,
6 ³ Sa+Ta % deadline
Sa,..., Se ³0

Sa

Sc

Sb

Se

SdTa

Ta

Tb

Tc

Td

5

12 September 2019 Constraint Programming

Assignment

Many constraint problems can be classified as assignment problems. In general
all that can be stated is that these problems follow a general CSP goal :

Assign values to the variables to satisfy the relevant constraints.

– Variables:
§ Objects / Properties of objects

– Domain:
§ Finite Discrete /Integer or Infinite Continuous /Real or Rational Values

§ colours, numbers, duration, load
§ Booleans for decisions

– Constraints:
§ Compatibility (Equality, Difference, No-attack, Arithmetic Relations)

Some examples may help to illustrate this class of problems

6

12 September 2019 Constraint Programming

Assignment (2)

A
B

C
D

E

F

Graph Colouring (0/1 or Booleans – but not SAT)

Assign values to A1,A2, .., F1,F2
s.t. Ar, Ab, Ag, .., Fr, Fb, Fg Î {0,1}

% one and only one colour for A, B, ..., F
Ar + Ab + Ag = 1;
....

% different colours for A and B, ...
Ar + Br <= 1; Ab + Bb <= 1; Ag + Bg <= 1;

....

A
B

C
D

E

F

Graph Colouring (Finite Domains)
Assign values to A, .., F,

s.t. A, B, .., F Î {red, blue, green}
A ¹ B, A ¹ C, A ¹ D,
B ¹ C, B ¹ F, C ¹ D, C ¹ E, C ¹ F
D ¹ E, E ¹ F

7

12 September 2019 Constraint Programming

Assignment (3)

Q1

Q2

Q3

Q4

N-queens (Finite Domains):

Assign Values to Q1,..., Qn Î {1,.., n}

s.t. "i¹j noattack (Qi, Qj)

Latin Squares (similar to Sudoku):
Assign Values to X11,..., X33 Î {1,.., 3}

s.t. "k "i "j≠i Xki ¹ Xkj % same row

"k "i "j≠i Xik ¹ Xjk % same column

X11 X12 X13
X21 X22 X23
X31 X32 X33

Magic Squares:
Assign Values to X11,..., X33 Î {1,..,9}
s.t. "i "j¹i Sk Xki = Sk Xkj = M % same rows sum

"i "j¹i Sk Xik = Sk Xjk = M % same cols sum
Sk Xkk = Sk Xk,n-k+1 = M % diagonals
"i¹k Ú "j¹l Xij ¹ Xkl % all different

X11 X12 X13
X21 X22 X23
X31 X32 X33

8

12 September 2019 Constraint Programming

Assignment (3)

Travelling Salesperson (Finite Domains)
Find values for A, B, C, D Î {1,..,4}

s.t. A ¹ B, ..., C ¹ D
% a permutation of [A,B,C,D]
if A = B+1 then XA = Lba,
...
if D = C+1 then XD = Lcd
XA + XB + XC + XD £ k

A B

C D

23

18

33

17 1321

Travelling Salesperson (0/1 or Booleans – but not SAT)
Find decision values for Xab...Xdc Î {0,1}

s.t. "a Sk Xak = 1

"a Sk Xka = 1

... no subcycle constraints

SaSb Xab Lab < k

A B

C D

23

18

33

17 1321

9

12 September 2019 Constraint Programming

Mixed: Assignment and Scheduling

Goal (Example): Assign values to variables

- Variables:
§ Start Times, Durations, Resources used

- Domain:
§ Integers (typicaly) or Rationals/Reals

- Constraints:
§ Compatibility (Conditional, Disjunctive, Difference, Arithmetic Relations)

Job-Shop
Assign values to Sij Î {1,..,n} % time slots

and to Mij Î {1,..,m} % machines available
% precedence within job

"j "i < k Sij + Dij ≤ Skj
% either no-overlap or different machines

"i,j,k,l (Mij = Mkl) → (Sij + Dij ≤ Skl) Ú (Skl + Dkl ≤ Sij)

J1

J2

J3

J4

1 2 3

1 2 3

1 2 3

1 2 3

10

12 September 2019 Constraint Programming

Filling and Containment

Goal (Example): Assign values to variables

- Variables:
§ Point Locations

- Domain:
§ Integers (typicaly) or Rationals/Reals

- Constraints:
§ Non-overlapping (Disjunctive, Inequality)

Fiiling
Assign values to Xi Î {1,.., Xmax} % X-dimension

Yi Î {1,.., Ymax} % Y-dimension
% no-overlapping rectangles

"i,j (Xi+Lxi £ Xj) % I to the left of J
(Xj+Lxj £ Xi) % I to the right of J
(Yi+Lyi £ Yj) % I in front of J
(Yj+Lxj £ Xi) % I in back of J

D

G

I

BC
A

J
H

E

F
K

11

12 September 2019 Constraint Programming

Constraint Satisfaction Problems

- Other Examples (from CP-16):

- Finding Patterns for DataMining
- Rather than finding rules (as in ID3 /CS4.5) whole sets must be obtained
- e.g. sequences of letters in ADN / Protein searches

- Hospital Residence Problem (with pairs)
- Kind of Stable Marriage Problem but pairings make it NP-Hard
- Both Hospitals and Residents (junior doctors) have a list of preferences
- Pairs of Residents have joint preferences

12

12 September 2019 Constraint Programming

Constraint Satisfaction Problems

- Formally a constraint satisfaction problem (CSP) can be regarded as a tuple
<X, D, C>, where

- X = { X1, ... , Xn} is a set of variables

- D = { D1, ... , Dn} is a set of domains (for the corresponding variables)

- C = { C1, ... , Cm} is a set of constraints (on the variables)

- Solving a constraint problem consists of determining values xi Î Di for each
variable Xi, satisfying all the constraints C.

- Intuitively, a constraint Ci is a limitation on the values of its variables.

- More formally, a constraint Ci (with arity k) over variables Xi1, ..., Xik ranging
over domains Di1, ..., Dik is a subset of the cartesian cartesian Dj1´ ... ´ Djk.

CiÍ Dj1´ ... ´ Djk

13

12 September 2019 Constraint Programming

Constraints and Optimisation Problems

- In many cases, one is interested not only in satisfying some set of constraints
but also in finding among all solutions those that optimise a certain objective
function (minimising a cost or maximising some positive feature).

- Formally a constraint (satisfaction and) optimisation problem (CSOP or COP)
can be regarded as a tuple <V, D, C, F>, where

- X = { X1, ... , Xn} is a set of variables

- D = { D1, ... , Dn} is a set of domains (for the corresponding variables)

- C = { C1, ... , Cm} is a set of constraints (on the variables)

- F is a function on the variables

- Solving a constraint satisfaction and optimisation problem consists of
determining values xiÎ Di for each variable Xi, satisfying all the constraints C
and that optimise the objective function.

14

12 September 2019 Constraint Programming

Decision Problems are NP-complete

- All the problems presented are decision problems in that a decision has to be
made regarding the value to assign to each variable.

- Non-trivial decision making problems are untractable, i.e. they lie in the class of
NP problems.

- Formally, these are the problems that can be solved in polinomial time by a non-
deterministic machine, i.e. one that “guesses the right answer”.

- For example, in the graph colouring problem (n nodes, k colours), if one has to
assign colours to n nodes, a non-deterministic machine could guess a solution in
O(n) steps.

- As a class, NP-complete problems may be converted in polinomial time onto
other NP-complete problems (SAT, in particular).

NP Problem SAT

15

12 September 2019 Constraint Programming

Decision Problems are NP-complete

- No one has already found a polynomial algorithm to solve SAT (or any other NP
problem), and hence the conjecture P ≠ NP (perhaps one of the most challenging
open problems in computer science) is regarded as true.

- Hence, with real machines and non trivial problems, one has to guess the adequate
values for the variables and make mistakes. In the worst case, one has to test O(kn)
potential solutions.

- Just to have an idea of the complexity, the table below shows the time needed to
check kn solutions, assuming one solution is examined in 1 µsec (times in secs).

1 hour = 3.6 * 103 sec 1 year = 3.2 * 107 sec TOUniv = 4.7 * 1017 sec

10 20 30 40 50 60

2 1.0E-03 1.0E+00 1.1E+03 1.1E+06 1.1E+09 1.2E+12

3 5.9E-02 3.5E+03 2.1E+08 1.2E+13 7.2E+17 4.2E+22

4 1.0E+00 1.1E+06 1.2E+12 1.2E+18 1.3E+24 1.3E+30

5 9.8E+00 9.5E+07 9.3E+14 9.1E+21 8.9E+28 8.7E+35

6 6.0E+01 3.7E+09 2.2E+17 1.3E+25 8.1E+32 4.9E+40

n

k

nk

16

kn

12 September 2019 Constraint Programming

Decision Problems are NP-complete

- Still, constraint solving problems are NP-complete problems (as SAT is).

- If a non-deterministic machine (that guesses correctly) can solve a problem in
polynomial time, then a real deterministic machine can check in polinomial time
whether a potential solution satisfies all the constraints.

- More important: with an appropriate search strategy, many instances of NP-
complete problems can be solved in quite acceptable times.

- Hence, search plays a fundamental role in solving this kind of problems.
Adequate search methods and appropriate heuristics can often solve large
instances of these problems in very acceptable time.

17

12 September 2019 Constraint Programming

Search Strategies

- There are two main types of search strategies that have been adopted to solve
combinatorial problems:

Complete Backtrack Search Methods:

- Solutions are incrementally completed, by assigning values to “undecided”
variables and backtrack whenever any constraint is violated;

- These methods are complete: if a solution exists it is found in finite time.

- More importantly, they can proof non-satisfiability.

Incomplete Local Search Methods:

- Complete “solutions” are incrementally repaired, by changing the values
assigned to some of the variables until a “real solution” is found;

- These local search methods are not guaranteed to avoid revisiting the
same solutions time and again and are therefore incomplete.

- They are often very efficient to find very good solutions (local optima)

18

12 September 2019 Constraint Programming

Optimisation Problems are NP-hard

- Optimisation problems are typically NP-hard problems in that solving them is at
least as difficult as solving the corresponding decision problem.

- In practice these problems cannot be solved in polynomial time by a non-
deterministic machine, nor can they be checked by a deterministic machine.

- In fact, to find an optimal solution it is not enough to find it ... It is necessary to
show that it is better than all other solutions!

- Being harder than the decision problems, optimisation problems also require
adequate search strategies, if larger instances are to be solved.

- In complete search, detection of failure and subsequent backtracking may
be imposed if the partial solution can be proved to be no better than one
already found (branch & bound).

19

12 September 2019 Constraint Programming

Declarative Programming

- Programming a combinatorial problem thus requires

§ The specification of the constraints of the problem; and

§ The specification of a search algorithm

- The separation of these two aspects has for a long time been advocated by
several programming paradigms, namely functional programming and logic
programming.

- Logic programming in particular has a built-in mechanism for search
(backtracking) that makes it easy to extend into constraint (logic) constraint
programming, by “replacing” its underlying resolution to constraint
propagation. A number of Constraint Logic Programming languages have
been proposed (CHIP, ECLiPSE, GNU Prolog, SICStus) to explore this
extension of logic programming.

- More recently, other declarative languages such as Comet (OO-like), Choco
(Java Library) and Zinc, provide more convenient data structures for
modelling, maintaining a declarative approach.

20

12 September 2019 Constraint Programming

Constraint Programming

Constraint Programming (and Languages) is driven by a number of goals

- Expressivity

- Constraint Languages should be able to easily specify the variables,
domains and constraints (e.g. conditional, global, etc...);

- Declarative Nature

- Ideally, programs should specify the constraints to be solved, not the
algorithms used to solve them

- Efficiency

- Solutions should be found as efficiently as possible, i.e. with the
minimum possible use of resources (time and space).

These goals are partially conficting goals and have led to the various
developments in this research and development area.

21

12 September 2019 Constraint Programming 22

Search Methods – Pure Backtracking

- In this course we will focus on these two aspects of Constraint Programming:

§ Declarative Modelling

• How to specify as naturally as possible the problem we want to solve

§ Efficient Execution

• How to solve the problems thus specified as efficiently as possible,
combining, as we should study, Heuristics with constraint propagation.

- These topics will be studied in the context of two types of domains

§ Finite Domains

• discrete domains, basically integer intervals)

§ Continuous Domains

• in principle, the difference between two values can be as small as we
may want.

12 September 2019 Constraint Programming

Constraint Programming – Finite Domains

- In Finite domains we will see that the the efficiency obtained in solving a problem with
CP depends on many issues that will be addressed in the course:

1. Formalization of Constraint Propagation

2. Types of constraints and their main features

3. Alternative models

a. Redundant Constraints

b. Symmetry Breaking Constraints

4. Heuristics that are most commonly used

5. Testing these techniques with Choco in several non-trivial examples

- These aspects will be studied in the first part of the course (first 6 weeks).

23

12 September 2019 Constraint Programming

Constraint Programming – Continuous Domains

Continuous constraints require somewhat different methods for constraint propagation
as well as enumeration. The main differences to consider are:

1. In a domain lo .. hi there are infinite values to consider. Hence enumeration cannot
be a simple test of the alternative values, backtracking if necessary.

2. Constraints should consider variables whose domains are intervals, and adapt
standard arithmetic to consider such domains – interval arithmetic.

3. Advanced methods can be used to propagate constraints, more sophisticated than
naïve methods adapted from the finite domains (e.g. interval Newton).

4. Approximations are often necessary (e.g. rounding off arithmetic operations) and
care must be taken that errors are not made (so as to loose solutions).

- Constraints in these continuous domains will be covered in the second part of the
course, by Prof. Jorge Cruz.

24

12 September 2019 Constraint Programming

Constraint Programming – Continuous Domains

A summary of this second part:

1. Continuous Constraint Satisfaction Problems

2. Continuous Constraint Reasoning

a. Representation of Continuous Domains

b. Pruning and Branching

3. Solving Continuous CSPs

a. Constraint Propagation

b. Consistency Criteria

4. Practical Examples

25

12 September 2019 Constraint Programming

Constraint Programming – Continuous Domains

A major concern of dealing with continuous constraints regards constraint propagation.

For these part of the course some topics will be dealt more formally, namely:

1. Interval Constraints Overview

2. Intervals, Interval Arithmetic and Interval Functions

3. Interval Newton Method

4. Associating Narrowing Functions to Constraints

5. Constraint Propagation and Consistency Enforcement

26

12 September 2019 Constraint Programming

Assessment

- Evaluation consists of the following components
§ Project 1 – Finite Domains Problem
§ Mini-Test 1 – Finite Domains Concepts
§ Project 2 – Continuous Domains Problem
§ Mini-Test 2 – Continuous Domains Concepts

- Projects are made in team work (2 students per group) and the tests assess the
students individually.

- All components have the same weight for the final grade.

- Students that do not get the minimum grade, are allowed to do a repetition exam if they
get at least an average grade of 8/20 in the two projects.

- Exact dates to be announced –
§ Project 1 and Mini-test 1 at mid-term (end October)
§ Project 2 and Mini-test 2 at the end of semester (mid December)

27

12 September 2019 Constraint Programming

Constraint Programming by Example

First example: SEND+MORE = MONEY

- Find the digits encoded by letters, where different letters stand for different
digits, and the symbolic sum below stands (the leftmost digits are not zero):

S E N D
+ M O R E
M O N E Y

- Similarly to all combinatorial problems, a declarative approach (as taken by
Constraint Logic Programming) solves this problem by separating the two
components:

§ Model: What are the variables that will be chosen for the problem
unknowns, and the constraints that must be satisfied

§ Search: What strategies are used to assign values to variables

28

12 September 2019 Constraint Programming

Constraint Programming by Example

Modelling

- There are two main steps in modelling a problem:

1. Choose variables to represent the unknowns

• What are the variables

• What values can they take

2. Select the constraints that these variables must satisfy according to the
conditions of the problem;

• How to constrain the variables

• Are there alternative (more efficient?) sets of constraints?

- These decisions are often interdependent as illustrated in this problem.

S E N D
+ M O R E
M O N E Y

29

12 September 2019 Constraint Programming

Constraint Programming by Example

Model 1 :

- Variables Adopted:

§ One variable for each letter (we use the letter as the name of the variable)

§ Each variable takes values in 0 to 9

- Constraints to be Satisfied:

§ All variables must be different;

§ The sum must be correct

§ No leading zeros

S E N D
+ M O R E
M O N E Y

30

12 September 2019 Constraint Programming

Constraint Programming by Example

Model 1 : In Choco, this model may be specified as follows

package choco;

import org.chocosolver.solver.Model;
import org.chocosolver.solver.*;
import org.chocosolver.solver.variables.IntVar;

public class sendmory {
public static void main(String[] args) {

Model model = new Model("send + more = money");
// Declaration of variables
// Specification of constraints
// execute
// show results

}
}

31

S E N D
+ M O R E
M O N E Y

12 September 2019 Constraint Programming

Constraint Programming by Example

Model 1 : In Choco, this model may be specified as follows

// Declaration of variables
IntVar s = model.intVar("S", 0, 9);
IntVar e = model.intVar("E", 0, 9);
IntVar n = model.intVar("N", 0, 9);
IntVar d = model.intVar("D", 0, 9);
IntVar m = model.intVar("M", 0, 9);
IntVar o = model.intVar("O", 0, 9);
IntVar r = model.intVar("R", 0, 9);
IntVar y = model.intVar("Y", 0, 9);
IntVar op1 = model.intVar("S", 0, 10000);
IntVar op2 = model.intVar("S", 0, 10000);
IntVar res = model.intVar("S", 0, 100000);
// Specification of constraints
// execute
// show results

32

S E N D
+ M O R E
M O N E Y

12 September 2019 Constraint Programming

Constraint Programming by Example

Model 1 : In Choco, this model may be specified as follows

// Declaration of variables
// Specification of constraints
model.arithm(m, ">", 0).post();
model.arithm(s, ">", 0).post();
model.arithm(res, "=", op1, "+", op2).post();

// op1 = 1000s + 100e +10n + d
op1.eq(s.mul(1000).add(e.mul(100)).add(n.mul(10)).add(d)).post();
op2.eq(m.mul(1000).add(o.mul(100)).add(r.mul(10)).add(e)).post();
res.eq(m.mul(10000).add(o.mul(1000)).add(n.mul(100)).add(e.mul(10)

).add(y)).post();

model.allDifferent(new IntVar[]{s, e, n, d, m, o, r, y}).post();

// execute
// show results

S E N D
+ M O R E
M O N E Y

33

12 September 2019 Constraint Programming

Constraint Programming by Example

Model 2 :

- There is an alternative modelling, that represents the total sum as it is usually
operated with “carries”

§ One variable for each letter (we use the letter as the name of the variable)

• Each variable takes values in 0 to 9

§ 4 Carries

• Each carry takes value 0 or 1

- Constraints to be Satisfied:

§ All variables must be different;

§ All the sums (digit by digit, including carries) must be correct

§ No leading zeros

C4 C3 C2 C1
S E N D

+ M O R E
M O N E Y

34

12 September 2019 Constraint Programming

Constraint Programming by Example

Model 2 : This alternative model can also be expressed in Choco

// Declaration of variables
IntVar s = model.intVar("S", 0, 9);
IntVar e = model.intVar("E", 0, 9);
IntVar n = model.intVar("N", 0, 9);
IntVar d = model.intVar("D", 0, 9);
IntVar m = model.intVar("M", 0, 9);
IntVar o = model.intVar("O", 0, 9);
IntVar r = model.intVar("R", 0, 9);
IntVar y = model.intVar("Y", 0, 9);
IntVar c1 = model.intVar("C1", 0, 1); //carries
IntVar c2 = model.intVar("C2", 0, 1);
IntVar c3 = model.intVar("C3", 0, 1);
IntVar c4 = model.intVar("C4", 0, 1);
// Specification of constraints
// execute
// show results

35

C4 C3 C2 C1
S E N D

+ M O R E
M O N E Y

12 September 2019 Constraint Programming

Constraint Programming by Example

Model 2 : This alternative model can also be expressed in Choco

// Declaration of variables
// Specification of constraints
model.arithm(c4,"=", m).post();
model.arithm(m, ">", 0).post();
model.arithm(s, ">", 0).post();

// d + e = y + 10 c1
d.add(e).eq(y.add(c1.mul(10))).post();
// c1 + n + r = e + 10 c2
c1.add(n).add(r).eq(e.add(c2.mul(10))).post();
c2.add(e).add(o).eq(n.add(c3.mul(10))).post();
c3.add(s).add(m).eq(o.add(c4.mul(10))).post();

model.allDifferent(new IntVar[]{s, e, n, d, m, o, r, y}).post();
// execute
// show results

C4 C3 C2 C1
S E N D

+ M O R E
M O N E Y

36

12 September 2019 Constraint Programming

Constraint Programming by Example

Enumeration :

- Once the variables are declared and the constraints posted, the constraint
solver should find values for the variables in some efficient way.

- This is because the underlying constraint propagation process does not
guarantee that the problem has a solution!

- It simply removes values from the domain of variables that guaranteedely do
not belong to any solution.

- The enumeration is typically achieved in Choco with method solve(), that
assigns values to the input variables and backtracks when this is impossible.

- The labelling process may be more or less efficient, depending on the
heuristics used. A fairly good heuristic is the fail-first that assigns values to the
variables with less values in their domains. In Choco, that may be expressed
by setting the search policy

• slv.setSearch(minDomLBSearch(vars));

- More sophisticated heuristics may nevertheless be programmed by the user.

37

12 September 2019 Constraint Programming

Constraint Programming by Example

Model 1 : In Choco, this model may be specified as follows

// Declaration of variables
// Specification of constraints

// execute
Solver slv = model.getSolver();
if (slv.solve()){

System.out.println(" " + Integer.toString(1000*s.getValue()+
100*e.getValue()+10*n.getValue()+d.getValue()));

System.out.println("+" + Integer.toString(1000*m.getValue()+
100*o.getValue()+10*r.getValue()+e.getValue()));

System.out.println("-----");
System.out.println(10000*m.getValue()+1000*o.getValue()+

100*n.getValue()+10*e.getValue()+y.getValue());
} else {

System.out.println("no solutions");
}

38

C4 C3 C2 C1
S E N D

+ M O R E
M O N E Y

12 September 2019 Constraint Programming 39

Constraint Programming

• An Introduction to CHOCO

12 September 2019 Constraint Programming 40

Constraint Programming Languages

- A number of (pedagogical) reasons might justify Comet:

§ It is stand-alone

• not a library of Java or C++, as is the case of Choco and Gecode.

§ It includes solvers for both

• Constraint Programming; and

• Constrained Local Search

• As a full fledged language, it allows the full programming of heuristics.

o in Zinc, heuristics cannot be fully specified (a number of annotations are
available but they are not sufficient for some problems).

§ Nevertheless, Comet has a major problem in that it has been discontinued, and
replaced by Objective-CP (designed by the same authors – Pascal Van
Hentenryck and Laurent Michel Modelling.

12 September 2019 Constraint Programming 41

Constraint Programming Languages

- Choco is a set of Java libraries that supports CP (Complete Backtrack Search) and
is thus adopted in the course, although not exclusively.

- As mentioned, the alternative language, Comet, previously used in the course, has
been discontinued (although it may still be used).

- Meanwhile, a language that is becoming a standard, for CP alone, is Zinc / MiniZinc.

- In particular, it provides an interface (Flat-Zinc) that almost all existing CP solvers can
support (Gecode, Choco, SICStus, … CaSPER).

- This makes it possible to test solvers in a competition held annually with the CP
conferences.

- Given the above said, we will use Choco in this course (but Comet may be used
alternatively).

42

8-queens problem

Q1 = 1

Q2 = 5

Q3 = 8

Q4 = 6

Q5 = 3

Q6 = 7

Q7 = 2

Q8 = 4

12 September 2019 Constraint Programming

12 September 2019 Constraint Programming 43

Constraint Programming Languages

int: n = 8;

array [1..n] of var 1..n: q;

include "alldifferent.mzn”;

constraint alldifferent(q); % rows
constraint alldifferent(i in 1..n)(q[i] + i-1); % / diagonal
constraint alldifferent(i in 1..n)(q[i] + n-i); % \ diagonal

solve :: int_search(q, first_fail,indomain_min, complete)
satisfy;

output ["8 queens, CP version:\n"] ++
[if fix(q[i]) = j then "Q " else ". " endif ++

if j = n then "\n" else "" endif
| i, j in 1..n
];

- The declarative nature of ZINC is easily illustrated with the n-queens problem:

12 September 2019 Constraint Programming 44

Constraint Programming Languages

import cotfd;
int t0 = System.getCPUTime();

int n = 8; range S = 1..n;

Solver<CP> cp();
var<CP>{int} q[i in S](cp,S);

solve<cp> {
cp.post(alldifferent(q));
cp.post(alldifferent(all(i in S) q[i] + i));
cp.post(alldifferent(all(i in S) q[i] - i));

}
using {

forall(i in S) by(q[i].getSize())
tryall<cp>(v in S) cp.label(q[i],v);

}

int t1 = System.getCPUTime();
cout << q << endl;
cout << " cpu time (ms) = " << t1-t0 <<endl;
cout << " number of fails = " << cp.getNFail() << endl;

… which can be compared with the Comet version…

12 September 2019 Constraint Programming 45

Constraint Programming Languages

public class n_queens {
public static void main(String[] args) {
int n = 24;
Model model = new Model(n + "-queens problem");
Solver s = model.getSolver();

// Use fail-first Heuristics
s.setSearch(minDomLBSearch(queens));

IntVar[] queens = model.intVarArray("Q", n, 1, n, false);
IntVar[] diag1 = new IntVar[n];
IntVar[] diag2 = new IntVar[n];
for(int i = 0 ; i < n; i++){

diag1[i] = q[i].sub(i).intVar();
diag2[i] = q[i].add(i).intVar();}

m.post(
m.allDifferent(q),
m.allDifferent(diag1),
m.allDifferent(diag2));

// Solve and show statistics
Solution solution = s.findSolution();
System.out.println(solution.toString());
model.getSolver().printStatistics();

}}

… and the Choco version (to be done interactively in class):

12 September 2019 Constraint Programming 46

Introduction to Choco

- Before addressing concepts and definitions we will informally see how these
features are addressed in the constraint programming language Choco.

- Choco is an Object Oriented language, implemented as a set of libraries of
JAVA, with special classes and methods to deal with Constraint Programming.

- To install Choco, download the Choco Solver from the website

• http://www.choco-solver.org

- You will get a zip file (4.10.1.zip) which contains the following files:

• choco-solver-4.10.0.jar: A ready-to-use jar file including dependencies;
it provides tools to declare a Model, the vari- ables, the constraints, the
search strategies, etc. In a few words, it enables modeling and solving
CP problems.

• apidocs-4.10.0.zip: Javadoc of Choco-4.10.0

12 September 2019 Constraint Programming 47

Introduction to Choco

- In Choco, a CSP (Constraint Satisfaction Problem) is typically solved in CP
with a program with the following structure

- Any Choco program requires a model. Model is a class with methods to
associate variables and constraints as well as nondeterministic search.

- To declare it the Model library must be imported;

import org.chocosolver.solver.Model;
Model model = new Model(n + "-queens problem");

import libraries;
// declare the variables
// post the constraints
// non deterministic search
// show results

12 September 2019 Constraint Programming 48

Introduction to Choco

- Variables are objects, declared by identifying their
§ Name (for reporting results)
§ Type
§ Domain

- We will be mostly concerned with Finite Domain (FD) variables, whose type is
IntVar, and have a domain that restricts the values that can appear in a
solution of the problem.

- Typically the domain is defined as a range of integers, as in

- Alternatively, the domain can be a set of integers

// Variable taking its value in [1, 3] (the value is 1, 2 or 3)
IntVar v1 = model.intVar("v1", 1, 3);

// Variable taking its value in {1, 3} (the value is 1 or 3)
IntVar v2 = model.intVar("v2", new int[]{1, 3});

12 September 2019 Constraint Programming 49

Introduction to Choco

- Variables may also be grouped together in arrays, specifying the size of the
arrays and the bounds of the individual elements, as in

- Variables may also be grouped together in matrices, specifying the size of the
arrays and the bounds of the individual elements, as

- To declare the variables, individually or in arrays the variable library must be
imported

IntVar[][] pos = model.intVarMatrix("T", nrows, ncols, 0, 9);

IntVar[] dst = model.intVarArray("D", n_elements, 0, 9);

import org.chocosolver.solver.variables.IntVar;

12 September 2019 Constraint Programming 50

Introduction to Choco

- Many types of constraints are defined in the language as primitives. They
belong to the class constraint and are declared with post method of the solver.

- The most common constraints are arithmetic constraints, imposing a relation
(==, !=, >, >=, <, <=) on arithmetic expressions built over CP and basic
variables and values with the arithmetic operators +, -, *, /.

- Simple Relational constraint with up to 3 arguments can be posted with the
arithm method, as in

- Constraint involving expressions with more than three arguments must be
specified with a “cumbersome” syntax, as seen before

model.arithm(res, "=", op1, "+", op2).post();

// c1 + n + r = e + 10 c2
c1.add(n).add(r).eq(e.add(c2.mul(10))).post();

12 September 2019 Constraint Programming 51

Introduction to Choco

- As a library of Java Choco inherits all its control structures (IF, FOR, WHILE)
that can be used to specify the constraints.

- For example, to impose all variables in a vector to be different one may use:

… although the same effects can be achieved with the alldifferent constraint

Model model = new Model(n + "-queens problem");
IntVar[] q = model.intVarArray("Q", n, 1, n, false);

for(int i = 0; i < n; i++){
for(int j = i+1; j < n; j++){

model.arithm(q[i], ”!=",q[j).post();
}

}

model.allDifferent(q).post()

12 September 2019 Constraint Programming 52

Introduction to Choco

- Other useful constraints are not easy to decompose into simpler arithmetic and
logical constraints.

- Even when they are, there are some specialised algorithms that achieve better
propagation.

- These are usually known as Global Constraints, and Choco supports a
number of those that have been proposed in the literature:

• Element
• Alldifferent
• Cardinality
• Knapsack
• Circuit
• Sequence
• Stretch
• Regular
• Cumulative

12 September 2019 Constraint Programming 53

Introduction to Choco

- Nondeterministic search is specified in CHOCO with a solver, associated to the
model previously defined, and asdequately imported.

- By default, a non-deterministic search is imposed, where alternative values for
the value of the variables are explored in some order and backtracked if they
lead to failure. This is achieved by method solve(), as in

- Some predefined heuristics can be specified to direct the search. For example
the first-fail heuristics can be specified as

import org.chocosolver.solver.Solver;
Solver s = model.getSolver();
s.solve()
// Use fail-first Heuristics
s.setSearch(minDomLBSearch(queens));

import static org.chocosolver.solver.search.strategy.Search.minDomLBSearch;
.....
s.setSearch(minDomLBSearch(queens));

s.solve()

12 September 2019 Constraint Programming 54

Introduction to Choco

- Solutions can also be obtained with a special class, Solution, that includes all
the declared decision variables, as in.

- A solution, if any, may be displayed converting it to a string, as in

- Alternatively, the value of some decision variable v, may be shown, by
obtaining its value (with method getValue(), and converting it to a string

import org.chocosolver.solver.Solution;

Solver s = model.getSolver();
Solution solution = s.findSolution();

if(solution != null){
System.out.println(solution.toString());}

System.out.print(String.valueOf(v.getValue())

12 September 2019 Constraint Programming 55

Introduction to Choco

- One solution that satisfies the problem is obtained with method solve(). When
more than the first solution is sought, then the solve() method may be used in
a while cycle, as in

- Notice that the solution must be reported inside the cycle (after leaving the the
cycle cycle the solver has no solution!).

- A similar technique should be adopted when aiming the optimization of some
variable v, after setting the model objective

while (s.solve()){
s.findSolution();
System.out.println(solution.toString());}

model.setObjective(Model.MINIMIZE, v);
s.setSearch(minDomLBSearch(vars));
....
while (s.solve()){

s.findSolution();
System.out.println(solution.toString());}

12 September 2019 Constraint Programming 56

Introduction to Choco

- We finish this brief introduction to CHOCO with some useful tips to measure
performance in program execution. The simplest way to obtain a number of
performance indicators of program execution, is with the statistics method:

- obtaining a complete statistics of execution, as in
model.getSolver().printStatistics();

- Model[24-queens problem] features:
Variables : 96
Constraints : 51
Building time : 0.064s
User-defined search strategy : yes
Complementary search strategy : no

- Complete search - 1 solution found.
Model[24-queens problem]
Solutions: 1
Building time : 0.064s
Resolution time : 0.054s
Nodes: 24 (445.9 n/s)
Backtracks: 6
Backjumps: 0
Fails: 4
Restarts: 0

12 September 2019 Constraint Programming 57

Introduction to Choco

- Individual performance indicators can be obtained by specific methods of the
model and the solver, namely the number of failures, backtracks and elapsed
CPU time

Model model = new Model(n + "-queens problem");
Solver s = model.getSolver();
...
float t0 = s.getTimeCount()*1000;
...
float t1 = s.getTimeCount()*1000;

// show model name
System.out.println(model.getName());
// number of failures
System.out.println(String.valueOf(s.getFailCount()));
// number of backtracks
System.out.println(String.valueOf(s.getBackTrackCount()));
// execution time
System.out.println(String.valueOf(t1-t0));

