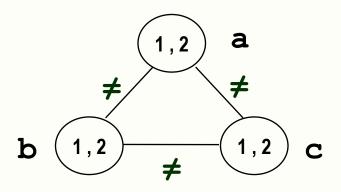
- An overview

- Higher Consistency Types: Path and i-consistency
- Consistency and Satisfiability
- Other Consistencies: Bounds- and SAC-Consistency
- Non-Binary Networks and Generalised Arc-Consistency

- The following constraint network is obviously inconsistent:



- Nevertheless, it is arc-consistent: every binary constraint of difference (≠) is arc-consistent whenever the constraint variables have at least 2 elements in their domains.
- However, is is not path-consistent: no label {<a-v_a>, <b-v_b>} that is consistent (i.e. does not violate any constraint) can be extended to the third variable (c).

 $\{\text{<a-1>, <b-2>}\} \rightarrow c \neq 1, c \neq 2 \qquad ; \qquad \{\text{<a-2>, <b-1>}\} \rightarrow c \neq 1, c \neq 2$

- This property is captured by the notion of path-consistency.

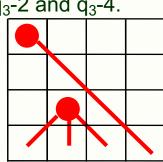
Definition (Path Consistency):

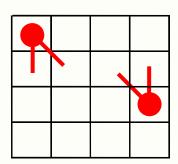
- A constraint satisfaction problem is path-consistent if,
 - It is arc-consistent; and
 - Every consistent 2-compound label {x_i-v_i, x_i-v_j} can be extended to a consistent label with a third variable x_k (k ≠ i and k ≠ j).
- The second condition is more easily understood as
 - For every compound label {x_i-v_i, x_j-v_j}, and for every k (k ≠ i and k ≠j) there must be a label x_k-v_k that supports {x_i-v_i, x_j-v_j}. In other words, the compound label {x_i-v_i, x_j-v_j, x_j-v_j} satisfies constraints c_{ij}, c_{ik}, and c_{kj}.

Example:

- By enforcing path consistency it is possible to avoid backtracking in the 4queens problem.
- In fact, q_1 -1 has only two supports in variable q_3 , namely q_3 -2 and q_3 -4. However:
- q_1 -1, q_3 -2 > cannot be extended to variable q_4

- q_1 -1, q_3 -4 > cannot be extended to variable q_2

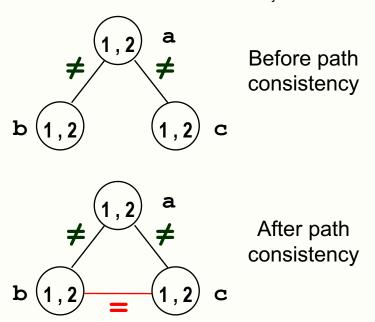




- Hence, value 1 can be safely removed from the domain of variable q_1 .
- With similar reasoning, it may be shown that none of the corners, and none of the central positions can have a queen.

- In general, and despite the previous example, maintaining path consistency does not prune the domain of a variable, but rather prunes compound labels with cardinality 2.
- This means that, imposing arc-consistency on variables x_i and x_j through variable x_k, will tighten the (possible non-existing) constraint between x_i and x_j.

In the example, a constraint of equality is imposed on variables b and c, because the compound labels { b-1, c-2 } and { b-2, c-1} cannot be extended to variable a.



- The constraints that are imposed by maintaining arc-consistency can be very general, and are more easily understood if they are represented by means of Boolean matrices (i.e. by extension).

Example:

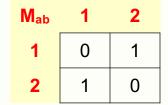
Matrix M_{ab} encodes a binary constraint of difference(≠) between variables a and b, each with the same two values in their domains

- Matrix \mathbf{M}_{13} represents a **no_attack** constraint between queens in the 1st and 3rd rows, for the 4-queens problem.



0

4

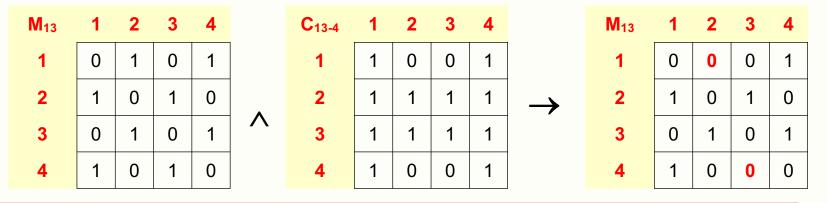


0

Path-Consistency

The imposition of path consistency, on variables x_i and x_j through variable x_k can be regarded as imposing a new constraint obtained by the Boolean multiplication of matrices M_{ik} and M_{ik}.

- The restriction to the initial constraint no_attack between queens 1 and 3, is imposed by **conjunction** of the initial matrix M₁₃ with matrix C₁₃₋₄.



20 September 2018

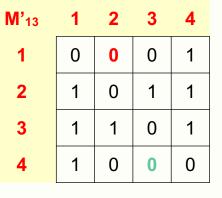
Path-Consistency

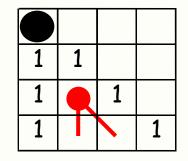
- Indeed, the new matrix M'₁₃ correctly registers the fact that

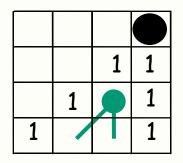
- Compound label {q₁-1, q₃-2} does not have support on q₄ and is removed from the initial constraint c_{13}

- Compound label $\{q_1-4, q_3-3\}$ does not have support on q_4 and is removed from the initial constraint c_{13}

20 September 2018







- The successive application of this tightening of the initial constraints will eventually lead to the deletion of values from the domains of the variables, as can be illustrated by the 4-queens problem.
- Firstly, constraint between variables q₁ and q₃ is tightened through variable q₂, as shown below.

1\2	1	2	3	4	2\3	1	2	3	4	1\3	1	2	3	4	1\3	1	2	3	4			
1	0	0	1	1	1	0	0	1	1	1	0	1	0	1	1	0	1	0	0			
2	0	0	0	1	2	0	0	0	1	2	1	0	1	0	2	1	0	0	0			
3	1	0	0	0	3	1	0	0	0	3	0	1	0	1	3	0	0	0	1			
4	1	1	0	0	4	1	1	0	0	4	1	0	1	0	4	0	0	1	0			

- In this case, two compound labels {q₁-1, q₃-4} and {q₁-4, q₃-1} are removed from the initial constraint c₁₃ (i.e. no_attack(q₁, q₃).
- At this point, all values of both variables q₁ and q₃ still have supporting values in the domain of the other variable (non-null rows and columns)

- Secondly, constraint c_{14} between variables q_1 and q_4 is tightened through variable q_3 , as shown below.

1\3	1	2	3	4
1	0	1	0	0
2	1	0	0	0
3	0	0	0	1
4	0	0	1	0

3\4	1	2	3	4
1	0	0	1	1
2	0	0	0	1
3	1	0	0	0
4	1	1	0	0

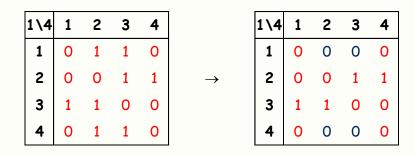
1\4	1	2	3	4
1	0	1	1	0
2	1	0	1	1
3	1	1	0	1
4	0	1	1	0

1\4	1	2	3	4
1	0	0	0	0
2	0	0	1	1
3	1	1	0	0
4	0	0	0	0

- Notice
 - the use of the tightened constraint c_{13} .
 - The rows 1 and 4 are null in the new matrix M'₁₃.
- This last result means that values 1 and 4 from variable q_1 have no support on variable q_4 when the constraint c_{14} is tightened through variable q_3 .
- Hence, values 1 and 4 can safely be removed from the domain of variable q_1

Path-Consistency

- The same applies when constraint c_{12} , is tightened through variable q_4 .
- But first, the rows corresponding to values 1 and 4 of variable q₁ are set to zero, since these values were removed from the value of the variable.



- The tightened constraint M_{14} , leads to the removal of values 2 and 3 from the domain of q_2 , since both columns 2 and 3 become null.

1\4	1	2	3	4
1	0	0	0	0
2	0	0	1	1
3	1	1	0	0
4	0	0	0	0

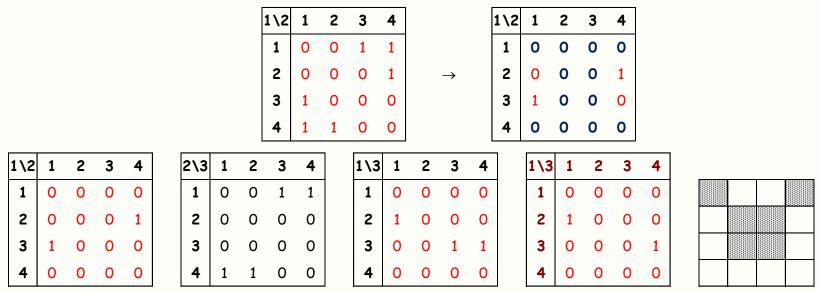
4\2	1	2	3	4
1	0	1	0	1
2	1	0	1	0
3	0	1	0	1
4	1	0	1	0

1\2	1	2	3	4
1	0	0	1	1
2	0	0	0	1
3	1	0	0	0
4	1	1	0	0

1\2	1	2	3	4
1	0	0	0	0
2	0	0	0	1
3	1	0	0	0
4	0	0	0	0

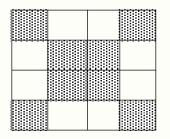
|--|--|

- The process is repeated with the tightening of constraint c_{13} , through q_2 .
- Since values 1 and 4 were removed from the domain of variable q₁ and so did values 2 and 3 from variable q₂, the corresponding rows and values are zeroes in matrix M₁₂ as explained before.
 - And so do from matrix M_{23} .

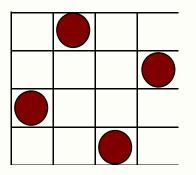


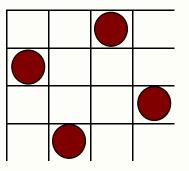
- Columns 2 and 3 are now made null the removal of these values from the domain of the corresponding variables in the new matrix, leading to the removal of 2 and 3 from the domain of q_3 .

- Finally, the process is repeated with constraints involving variable q₄, leading to the removal of values 1 and 4 from the domain of q₄.



- At this point, the remaining values in variables q₁ to q₄ all belong to one of the two solutions of the 4-queens problem.

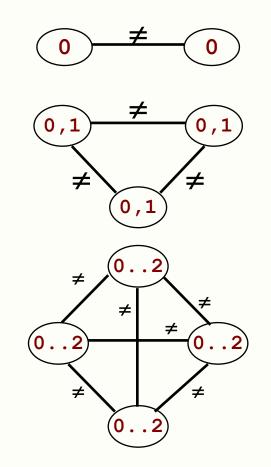




- Labelling of the variables can thus find a solution with no backtracking at all.

- The notions of node-, arc- and path-consistency can be generalised further to i-consistency, with increasing demands of consistency.
 - A node consistent network, that is not arc consistent (i.e. *2-consistent*).
 - An arc consistent network, that is not path consistent (i.e. *3-consistent*)

- A path-consistent network, which is not ... 4-consistent



- The criterion of i-consistency is thus defined as follows.

Definition (i-Consistency):

- A constraint satisfaction problem is **i-consistent** if,
 - all compound labels of cardinality i-1 can be extended to any other ith variable.
- For example, any compound label < x₁-v₁, x₂-v₂, ..., x_k-v_k>, in a i-consistent constraint network (k = i-1), that satisfies the constraints over variables of the set S = {x₁, x₂, ..., x_k} can be extended to any another variable x_i, (∉ S) i.e. there is a value v_i in the domain of x_i that satisfies all the constraints defined on the set S' = S ∪ {x_i} of variables.
- As a special case, when i=1, only the unary constraints must be satisfied.

- Additionally, strong consistency can also be defined

Definition: i-Consistency

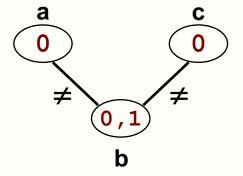
- A constraint satisfaction problem is strongly i-consistent if,
 - It is k-consistent for all $k \leq i$.
- Given this definitions it is easy to notice the following equivalences:

Node-consistency	\leftrightarrow	strong 1-consistency
Arc- consistency	\leftrightarrow	strong 2-consistency
Path-consistency	\leftrightarrow	strong 3-consistency

- Notice that the analogies of node-, arc- and path- consistency were made with respect to **strong i-consistency**.
- This is because a constraint network may be i-consistent but nonetheless not to be m-consistent (for some m < i).
 - For example, the network below is 3-consistent, but not 2-consistent. Hence it is not strongly 3-consistent.
 - The only 2-compound labels, that satisfy the constraints are

{a-0,b-1}, {a-0,c-0}, and {b-1, c-0}

- They may be extended to the remaining variable {a-0, b-1, c-0}
- However, the 1-compound label {b-0} cannot be extended neither to variable a (i.e. {a-0,a-0} ?) nor c (i.e. {b-0, c-0} !



- For i > 3, i-consistency cannot be implemented with binary constraints alone. In fact:
 - 2-consistency checks whether a 1-label $\{x_i-v_i\}$ can be extended to some other 2-label $\{x_i-v_i, x_j-v_j\}$. If that is not the case, label $\{x_i-v_i\}$ is removed from the domain of X_i .
 - 3-consistency checks whether a 2-label {x_i-v_i, x_j-v_j} can be extended to a 3-label {x_i-v_i, x_j-v_j, x_k-v_k}. If that is not the case, label {x_i-v_i, x_j-v_j} is removed.
 - Removing label $\{x_i-v_i, x_j-v_j\}$ is not achieved by removing values from the domains of the variables, but rather by tightening a constraint c_{ij} on variables x_i and x_j .
- By analogy, to impose 4-consistency 3-labels may have to be removed, hence a constraint on 3 variables has to be created or tightened.
- In general, maintaining i-consistency requires imposing constraints of arity i-1.

- The algorithms that were presented for achieving arc-consistency could be adapted to obtain i-consistency, provided that we consider constraints with arity i-1.
- The adaptation of the AC-1 algorithm (brute-force) would have
 - Space complexity of O(2ⁱ (nd)²ⁱ).
 - Time complexity of **O(nⁱdⁱ)**.
- The adaptation of the AC-4 and AC-6 algorithms lead to optimal asymptotic time complexity of Ω (nⁱdⁱ) (a lower bound).
- Given the mentioned complexity (even if the typical cases are not so bad) their use in backtrack search is generally not considered.
- The main application of these criteria is in cases where tractability can be proved based on these criteria.

- All types of i-consistency can be imposed by polynomial algorithms, with asymptotic time complexity Ω(nⁱdⁱ) even when the corresponding problems (modelled with binary constraints) are NP-complete.
- Hence, in general for a network with n variables, i-consistency (for any i < n) does not imply satisfiability of the problem, i.e.
 - There are unsatisfiable problems (modelled with binary constraints) whose corresponding network is i-consistent.
- Of course, the converse is also true
 - There are satisfiable problems, modelled with binary constraints, whose corresponding network is not i-consistent.
- Nevertheless, in some special cases, the two concepts (i-consistency and satisfiability are equivalent).
- We will overview three such cases.

Case 1: A network of binary constraints, whose variables have only 2 values in their domain, is satisfiable iff it can be made path-consistent.

Proof: By recasting the problem to 2-SAT.

- If the network is path-consistent, then
 - 1. all binary constraints are explicit, and
 - 2. the matrices representing the constraints have a maximum of 2 rows and 2 columns.
- Hence, the satisfaction of a constraint can be equated to the satisfaction of a Boolean formula in disjunctive normal form (see figure below for an example).

a\b	3	4
2	1	1
5	0	1

 $(a2 \land b3) \lor (a2 \land b4) \lor (a5 \land b4)$

• But given that there are only two values in each domain we may make explicit that one of the values corresponds to the negation of the other, as shown below

 $a^2 = a$

$$a \setminus b$$
 3 4 2 1 1 5 0 1

 $\mathsf{R} = (\mathsf{a} \land \mathsf{b}) \lor (\mathsf{a} \land \neg \mathsf{b}) \lor (\neg \mathsf{a} \land \neg \mathsf{b})$

- Now, since path-consistency makes explicit all implicit relations between variables, the corresponding path-consistent network will contain a 0-matrix if and only if the corresponding problem is unsatisfiable.
- Since all the constraints are recast into a 2-SAT formula, solving them is tractable!

- Before presenting another theorem relating k-consistency and tractability it is convenient to consider constraint networks with n-ary constraints (n>2), either because a problem is specified with such constraints, or because these constraints are induced in a (binary) graph when k-consistency (k>3) is imposed on the constraint network.
- For this purpose we have the following definition:

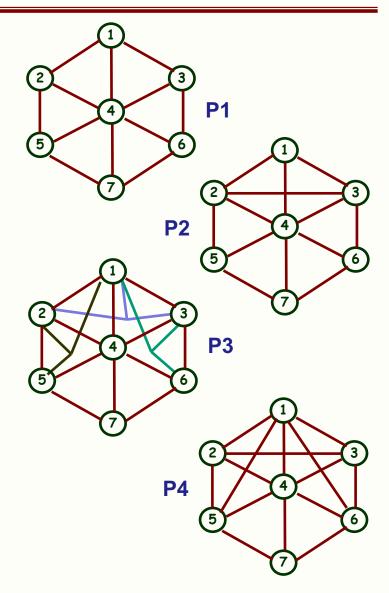
Definition: Primal Graph of a Constraint Network

- The primal graph of a constraint network is a graph where there is an edge between two variables iff there is some constraint with the two variables in its scope.
- Given the definition, the primal graph of a constraint satisfaction problem coincides with the problem graph if the only constraints to be considered are binary (or unary).

Graph Width

Example:

- Let us assume that:
- 1. the initial formalisation of a problem leads to the network P1;
- imposing path-consistency, arcs are added between variables, e.g. 2-3, resulting in network P2 (still a graph);
- Imposing 4-consistency, hyper-arcs are imposed on variables 1-2-3, 1-2-5 and 1-3-6, resulting in network P3 (a hypergraph);
- Now, the primal graph of the problem is shown as graph P4.

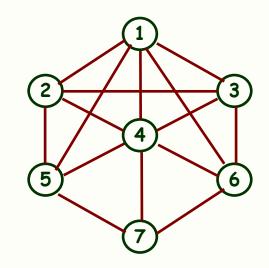


Definition: Node width, given ordering O

Given some total ordering, O, defined on the nodes of a graph, the width of a node N given ordering O, is the number of lower order nodes that are adjacent to N.

Example: For the graph and the ordering O_1 shown we have

- $w(1, O_1) = 0$
- w(2, O₁) = 1 (node 1)
- w(3, O₁) = 2 (nodes 1 and 2)
- w(4, O₁) = 3 (nodes 1, 2 and 3)
- w(5, O₁) = 3 (nodes 1, 2 and 4)
- w(6, O₁) = 3 (nodes 1, 3 and 4)
- w(7, O₁) = 3 (nodes 4, 5 and 6)

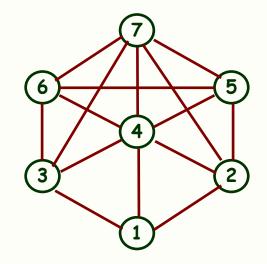


Graph Width

- Different orderings will produce different widths for the nodes of the graphs.

Example: For the same graph but with an "inverted ordering O₂, we have

- w(1, O₂) = 0
- w(2, O₂) = 1 (node 1)
- w(3, O₂) = 1 (node 1)
- w(4, O₂) = 3 (nodes 1, 2 and 3)
- w(5, O₂) = 2 (nodes 2 and 4)
- w(6, O₂) = 2 (nodes 3 and 4)
- w(7, O₂) = 5 (nodes 2, 3, 4, 5 and 6)



- From the width of the nodes one may obtain the width of a graph.

Definition: Graph width, given ordering O

Given some total ordering, O, defined on the nodes of a graph, the width of the graph, given ordering O is the maximum width of its nodes, given ordering O.

Example: For the two orderings we obtain

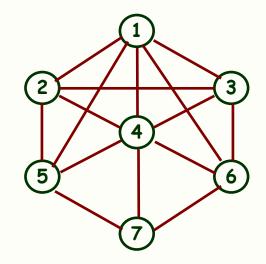
$$W(G,O_1) = 3$$
 $W(G,O_2) = 5$

Graph Width

- Now we may define the width of a graph, independent of the ordering used.

Definition: Graph width

- The width of a graph is the lowest width of the graph over all possible total orderings.
- In the example, it is easy to see that the width of the graph is 3.
- a) Ordering O_1 assigns width 3 to the graph. Hence the graph width is not greater than 3.
- b) A width of 2 on a graph with 7 nodes would require the graph to have at most 0+1+5*2 = 11 edges. Hence, the width of the graph, which has 15 edges, cannot be less than 3.
- c) From a) and b) the width of graph G is 3.

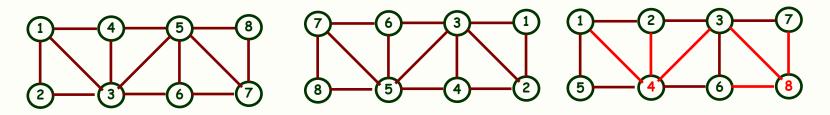


Tractability and i-Consistency

- Now we can present a theorem relating k-consistency and the width of a graph, which indirectly checks whether a problem is tractable.
- Theorem: Graph width and Satisfiability
 - Let a constraint satisfaction problem be modelled by a constraint network, that after imposing k-consistency leads to a primal graph of width k-1. Under these conditions, any ordering that assigns width k to the primal graph is a backtrack free ordering (BTF).

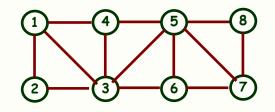
Example:

• For the networks bellow, assumed to be path-consistent (strong 3-consistent) O_1 and O_2 (with widths 2) are BTF orderings, but O_3 (width 3) is not.



Tractability and i-Consistency

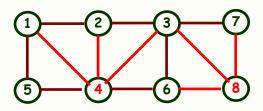
- In fact, for ordering O₁
 - 1. every label {x₁-v₁, x₂-v₂}, has a support in x₃, say {x₃-v₃}.
 - 2. But, label {x₁-v₁, x₃-v₃}, has a support in x₄, say {x₄-v₄}.



- 3. Now, label {x₃-v₃, x₄-v₄}, has a support in x₅, say {x₅-v₅}.
- 4. Then, label {x₃-v₃, x₅-v₅}, has a support in x₆, say {x₆-v₆}.
- 5. And, label { x_5-v_5 , x_6-v_6 }, has a support in x_7 , say { x_7-v_7 }.
- 6. Finally, label {x₅-v₅, x₇-v₇}, has a support in x₈, say {x₈-v₈}.
- All things considered, label {x₁-v₁, x₂-v₂, x₃-v₃, x₄-v₄, x₅-v₅, x₆-v₆, x₇-v₇,x₈-v₈} is a solution of the problem, and was found with no backtracking

Tractability and i-Consistency

- However, for ordering O_3
 - every label {x₁-v₁, x₂-v₂}, has a support in x₄, say {x₄-u₄}.
 - every label {x₂-v₂, x₃-v₃}, has a support in x₄, say {x₄-v₄}.



- But there is no guarantee that v₄ and u₄ are the same!
- In fact, there might be no value in the domain of x₄ that supports both the assignments {x₁-v₁, x₂-v₂}, and {x₂-v₂, x₃-v₃}.
- If this is the case, after assigning values $\{x_1-v_1, x_2-v_2, x_3-v_3\}$, no value exists for x_4 that is compatible with these and one of them must be backtracked !!!
- In this example, the same would happen with variable x₈ (connected to "prior" variables x₃, x₆ and x₇).

Graph Width

- To take advantage of the relation between i-consistency and induced graph width, it is still necessary to find the width of a graph or, equivalently, one optimal ordering, i.e. one that induces a minimal width.
- Fortunately there is a greedy algorithm (thus polynomial) that finds all optimal orderings. The idea is very simple. Always select (non-deterministically) a node with the least number of adjacent nodes (less degree). Put it in the back of the ordering, delete all the arcs leading to the node, and proceed recursively.

```
function min-width(G: set of Nodes, A: set of Arcs):
        Sequence of Nodes;
if G.nodes = {n} then
        L 	 [n]
else
        n <- arg_n min {degree(n,G,A)}
        G1.arcs 	 G.arcs \ {A: A = (_,n) \ V A = (n,_)
        G1.nodes 	 G.nodes\{N}
        L 	 min-width(G1) + [ n ]
end if
        min-width 	 L
end function
```

- So, in addition to

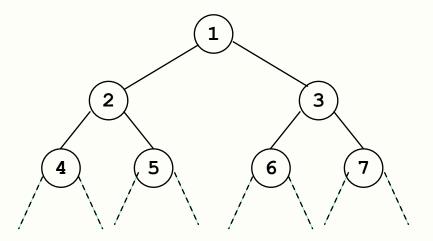
Case 1: A network of binary constraints, whose variables have only 2 values in their domain, is satisfiable iff it can be made path-consistent.

we have

Case 2: A network of constraints (of any arity), whose primal graph has width k is satisfiable iff it is k+1-consistent.

Example:

- 2-consistency (i.e. arc-consistency) of the constraint network guarantees the satisfaction of the associated constraint problem, if all constraints are binary and the constraint graph has the topology of a tree.
- A BTF ordering proceeds from the root to the leaves



- The previous 2 cases can be regarded as special cases of CSP tractable problems whose **language** or **structure** are restricted wrt to general binary CSPs.

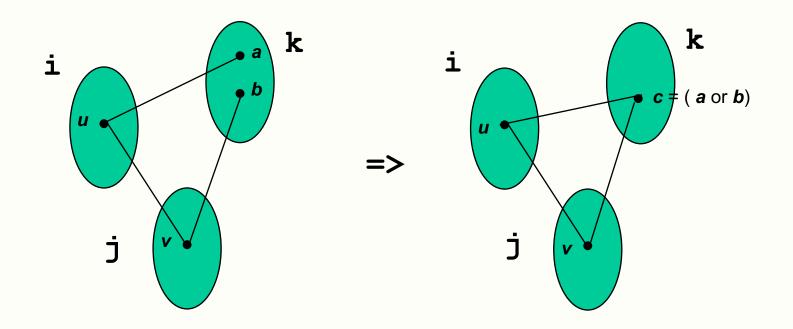
Case 1 (Constraint Language Restriction): A network of binary constraints, whose variables have only 2 values in their domain, is satisfiable iff it can be made path-consistent.

Case 2 (Structural Restriction): A network of constraints (of any arity), whose primal graph has width k, is satisfiable iff it is k+1-consistent.

- For the third case we present next, the **Broken-Triangle Property** (BTP) is a polynomial-time detectable property which defines a novel hybrid tractable class of binary CSP instances.
- The BTP can be viewed as forbidding the occurrence of certain sub-problems of a fixed size within a CSP instance.

Definition: Broken-triangle property

 A binary CSP instance satisfies the broken-triangle property (BTP) with respect to the variable ordering <, if, for all triples of variables i, j, k such that i < j < k, if (u,v)∈R_{ij}, (u,a)∈R_{ik} and (v,b)∈R_{ik}, then either (u,b)∈R_{ik} or (v,a) ∈ R_{ik}.



- To check the tractability of this class of problems we have the following *

Theorem: Detection of a BTP variable ordering

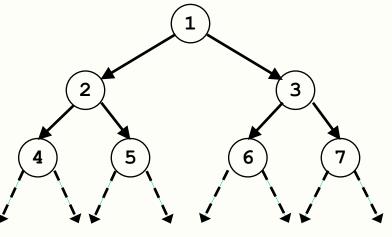
- Given a binary CSP instance I, there is a polynomial-time algorithm to find a variable ordering <, such that I satisfies the broken-triangle property with respect to < (or to determine that no such ordering exists).
- For the CSP instances that have the BTP with respect to some ordering there is thus a polynomial-time procedure to determine a variable ordering which guarantees backtrack-free search.
- Moreover,

Theorem: Finding solution for a BTP instance

- For any binary CSP instance which satisfies the BTP with respect to some known variable ordering <, it is possible to find a solution in O(d²e) time (or determine that no solution exists).
- Hence a problem that presents the BTP property is tractable.
 - Not only it is tractable finding the order of variables; but
 - finding a solution in BTP orderings is also tractable.

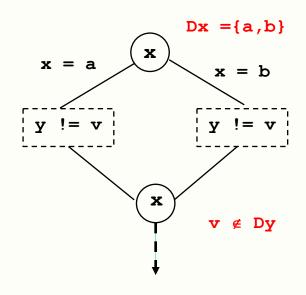
* See details in Martin C. Cooper, Peter G. Jeavons, András Z. Salamon, Generalizing constraint satisfaction on trees: Hybrid tractability and variable elimination, AI Journal, 174 (2010), pp. 570–584

- Some constraints may take advantage of some special features to improve the efficiency of their (arc-consistency) propagators.
- Take for example the case of a CSP with a tree-structure.
- Although arc-consistency requires support in both directions of the edges of the graph, support is only needed "downwards", if the the order in which variables are labelled is also "downwards".
- Hence, in these networks there is only the need to maintain **directed-arc consistency!**



- Of course, this case can be generalised for networks of width k for which all that is required is to maintain **directed k-consistency** to guarantee satisfiability.

- As mentioned, path-consistency is usually too heavy. Nevertheless, there is a variation of arc-consistency that is sometimes able to prune values from variables that standard arc-consistency cannot. An example can illustrate this effect.
- If at some point in the search, some variable x is chosen to be labelled, one may try to label it with all its possible values, and apply arc-consistency with no commitment (sometimes known as "shaving").
- If some value v of some other unlabelled variable y is removed in all cases, than
- this value can safely be removed form the domain of y, below the choice-point where variable x is labelled.



Arc-consistency: special purpose propagators

- Some constraints may take advantage of some special features to improve the efficiency of their propagators.
- Take for example the propagator for the n-queens problem: **no_attack(i, q_i, j, q_j)**.
- The usual arc-consistency would propagate the constraint (i.e. prune each of the values in the domain of q_1/q_2 with no supporting value in q_2/q_1), whenever the constraint is taken from the queue (assuming an AC-3 type algorithm).
- However, it is easy to see that a queen with 4 values in the domain offers at least one support value to any other queen.
- In fact a queen q_i can only be attacked by 3 positions of a queen q_j from another row j. Hence the 4th queen in row j will not attack it.
- Hence, the propagator for **no_attack** should first check the cardinality of the domains, and only check for supports for queens that have a domain with cardinality of 3 or less!

Non-Binary Constraints: Bounds-consistency

- In numerical constraints (equality and inequality constraints) it is very usual not to impose a too demanding arc-consistency, but rather to impose mere **bounds consistency**.
- Take for example the simple constraint **a** < **b** over variables **a** and **b** with domains 0..1000.
- In such inequality constraints, the only values worth considering for removal are related to the bounds of the domains of these variables.
- In particular, the above constraint can be compiled into

max(a) < max(b) and min(b) < min(a)

- In practice this means that the values that can be safely removed are
 - all values of **a** above the maximum value of **b**;
 - all values of **b** below the minimum value of **a**;
- These values can be easily removed from the domains of the variables.

Non-Binary Constraints: Bounds-consistency

- It is interesting to note how this kind of consistency detects contradictions.
- Take the example of a < b and b < a, two clearly unsatisfiable constraints. If the domains of a and b are the range 1..1000, it will take about 500 iterations to detect contradiction

a:: 1 1000, b:: 1 1000	$a < b \rightarrow$	a:: 1 <mark>999</mark> , b:: <mark>2</mark> 1000
a:: 1 999, b:: 2 1000	$a > b \rightarrow$	a:: <mark>3</mark> 999, b:: 2 <mark>998</mark>
a:: 3 999, b:: 2 998	a < b \rightarrow	a:: 3 <mark>997</mark> , b:: 4 998
a:: 3 997, b:: 4 998	a > b \rightarrow	a:: <mark>5</mark> 997, b:: 4 <mark>996</mark>
a:: 499501, b:: 498500	a < b \rightarrow	a::499 <mark>499</mark> , b:: <mark>500</mark> 500
a:: 500500, b:: 500500	a > b \rightarrow	a:: <mark>501</mark> 500, b::500 <mark>499</mark>

- Now, the lower bound is greater than the upper bound of the variables domains, which indicates contradiction!

Non-Binary Constraints: Bounds-consistency

- This reasoning can be extended to more complex numerical constraints involving numerical expressions:

Example:

$a + b \leq c$

• The usual compilation of this constraint is

$max(a) \le max(c) - min(b)$	to prune high values of a
$max(b) \le max(c) - min(a)$	to prune high values of b
$\min(c) \geq \min(a) + \min(b)$	to prune high values of a

- Many numerical relations envolving more than two variables can be compiled this way, so that the corresponding propagators achieve bounds consistency.
- This is particularly useful when the domains are encoded not as lists of elements but as pairs **min .. max** as is usually the case for numerical variables.

Enforcing generalised arc-consistency: GAC-3

- All algorithms for achieving arc-consistency can be adapted to achieve **generalised arc-consistency** (or **domain-consistency**) by using a modified version of the revise_dom predicate, that for every k-ary constraint checks support values from each variable in the remaining k-1 variables.

```
predicate revise gac(V, D, c \in C): set of labels;
   R < - \emptyset;
    for x; in vars(c)
        for v_i in dom(X_i) do
        Y = vars(c) \setminus \{x_i\};
        if \neg \exists V \text{ in dom}(Y): satisfies({x_i - v_i, Y - V}, c) then
            dom(X_i) \leq dom(x_i) \setminus \{v_i\};
            R \leftarrow R \cup \{x_i - i\};
        end if
    end for
    revise gac <- R;</pre>
end predicate
```

Enforcing generalised arc-consistency: GAC-3

- The GAC-3 algorithm is presented below, as an adaptation of AC-3.
- Any time a value is removed from a variable X_i, all constraints that have this variable in the scope are placed back in the queue for assessing their local consistency.

```
procedure AC-3(V, D, C);
NC-1(V,D,C); % node consistency
Q = \{ c \mid c \in C \};
while Q \neq \emptyset do
Q = Q \setminus \{c\} % removes an element from Q
for x<sub>i</sub>-i in revise_gac(V,D, c \in C) do % revised x<sub>i</sub>
Q = Q \cup \{r \mid r \in C \land i \in vars(r) \land r \neq c \}
end if
end while
end procedure
```

Time Complexity of GAC-3: O(a k² d^{k+1})

- Every time that an hyper-arc/n-ary constraint is removed from the queue Q, predicate revise_gac is called, to check at most k*dk tuples of values.
- In the worst case, each of the a constraints is placed into the queue at most k*d times.
- All things considered, the worst case time complexity of GAC-3, is

O(a k² d^{k+1})

• Of course, when all the constraint are binary the complexity of GAC-3 is the same of AC-3, i.e.

O(a d³)

Constraint Propagation

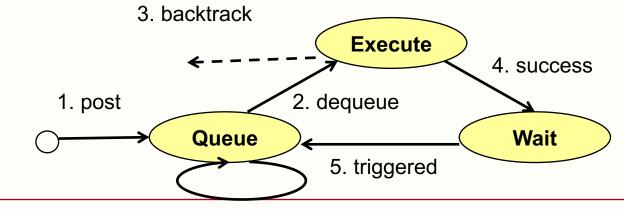
- Generalised arc-consistency provides a scheme for an architecture of constraint solvers, even when constraints are not binary.
- For every constraint (binary or n-ary) a number of propagators are considered.
 In general, each propagator:
 - affects one variable (aiming at narrowing its domain, when invoked);
 - is triggered by some events, namely some change in the domain of some variable;
- For example, the posting of the constraint c :: x + y = z creates 3 propagators

$$P_x: x \leftarrow y - z$$
; $P_y: y \leftarrow z - x$; $P_z: z \leftarrow x + y$

- Propagator P_x (likewise for propagators P_y and P_z) is triggered by some change in the domain of variables y or z.
- When executed it (possibly) narrows the domain of x. If this becomes empty, a failure is detected and backtracks is enforced.

Constraint Propagation

- The life cycle of such propagators can be schematically represented as follows:
 - 1. Propagators are created when the corresponding constraint is posted. They are enqueued and become ready for execution.
 - 2. When they reach the front of the queue they are executed. Upon execution the domain of the propagator variable is possibly narrowed.
 - 3. If the domain is empty, backtracking occurs, and after trailing, the propagator is put back in the queue.
 - 4. Otherwise, the propagator stays waiting for a triggering event.
 - 5. When one such event occurs the propagator is enqueued . While enqueued, other triggering events are possibly "merged" in the queue.



20 September 2018

 $P_x: x \leftarrow y - z$; $P_y: y \leftarrow z - x$; $P_z: z \leftarrow x + y$

- Propagators aim at maintaining some form of consistency, typically domain consistency or bounds consistency. This has a direct influence on the events that trigger them.
- For example, with bounds consistency, propagator Px is triggered when the maximum or minimum values in the domain of variables y and z is changed.
 These are the only events that change the maximum and minimum values of the domain of variable x.
- In contrast, if domain consistency is maintained, propagator Px is triggered whenever any value is removed from the domain of any of the variables y or z, since these removals may end the support of some value in the domain of x.
- This also means that sometimes the activation of the propagator does not lead to the removal of any value in the domain. For example value 3 in x may be supported by either values 5 and 2, or by values 7 and 4 for variables y and z. If 7 is removed from the domain of y, x= 3 still has support in y and z.

Generalised arc-consistency: Global Constraints

- The time complexity of generalised arc consistency for n-ary constraints may be too costly. Consider the case of k variables that all have to take different values.

 $\mathbf{x}_1 \neq \mathbf{x}_2, \, \mathbf{x}_1 \neq \mathbf{x}_3 \, \dots \, \mathbf{x}_1 \neq \mathbf{x}_k \, \dots \, \mathbf{x}_{k\text{-}1} \neq \mathbf{x}_k$

- These k(k-1)/2 binary constraints can be replaced by a single k-ary constraint

all_different(x_1 , x_2 , x_3 , ..., x_k)

- However, checking the consistency of such constraint by the naïve method presented, would have complexity O(a k² d^{k+1}), i.e. O(k⁴ d^{k+1}).
- This is why, some very widely used n-ary constraints are dealt with as **global constraints**, for which special purpose, and much faster, algorithms exist to check the constraint consistency.
- In the all_different constraint, an algorithm based in graph theory enforces this checking with complexity O(d k^{3/2}), much better than the naïve version.
- For example for $\mathbf{d} \approx \mathbf{k} \approx \mathbf{9}$ (sudoku problem!) the number of checks is reduced from $9^{2*}9^{10} \approx \mathbf{3^{*}10^{10}}$ to a much more acceptable number of $9^* \ 9^{3/2} \approx \mathbf{243}$.