
Constraint Solving - Global Constraints

1. Traveling Salesperson (TSP)

The distances between a set cities in Bavaria are specified
in files bavariaNN.txt (where NN represents the number
of cities considered), in Bavaria_benchmarks.zip†.
The files start by the number k of cities, followed by the
adjacency matrix that constains the distances between all
pairs of cities. For example, the file "bavaria07.txt"
contains the following text:
The TSP problem consists of finding the shortest tour required for a salesman to visit all cities,
without visiting any city twice, and returning to the starting city. More formally, considering
the graph G = (N,E) where N is the set of k nodes (corresponding to the cities) and E the set of
edges between the nodes labelled with their costs (distances in this case), the TSP problem
consists of finding the Hamiltonian cycle in the graph G with lowest cost.

Rank: Model (and solve) the problem with array rank[1..k] of decision variables, where
rank[i] represents the i-th city to be visited in the tour. For example, tour 1® 5 ® 2

® 6 ® 7 ® 4 ® 3 ® 1 is represented by rank = [1,5,2,6,7,4,3].

Next: Solve the problem with an alternative model using an array next[1..k] of decision
variables, where next[i] represents the city that follows city i in the tour. The above
solution is now represented by next = [5,6,1,3,2,7,4].

In both the above models adopt the symmetry breaking assumption that the tour starts in city 1,
and make sure that your solution is not composed of sub-cycles. Which of the models is more
efficient?

Global: Solve the TSP problem with the model Next, but now using the global constraints
circuit and circuitMin available in Comet. Compare the efficiency of the execution
for various graphs available in file "bavaria.zip".

 † Source: http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
 benchmark: bayg29.tsp.gz

Sugestion for Reading Data Files:
To read a data file with integers adapt the following procedure that reads a file with data in the
format of the data file " bavariaNN.txt ", with name fname, placed in the same directory of
the code file.

function int [,] read_mat(Integer N, string fname){
 string [] dirs = System.getArgs();
 string directory = dirs[3].suffix(2);
 string ename = directory + "/" + fname;
 ifstream file(ename);
 N := file.getInt(); // the number of cities
 int d [1..N, 1..N];
 forall(i in 1..N, j in 1 .. N) d[i,j] = file.getInt();
 return d;
}

7
 0 107 241 190 124 80 316
107 0 148 137 88 127 336
241 148 0 374 171 259 509
190 137 374 0 202 234 222
124 88 171 202 0 61 392
 80 127 259 234 61 0 386
316 336 509 222 392 386 0

2. Job Shop
A job shop problem consists of scheduling J jobs, each consisting of T tasks, which have
precedence constraints. The jobs are independent, except for the fact that the tasks are executed
in machines of certain types and there are only a limited number of machines of each type. The
goal is to finish all tasks within a certain makespan (Satisfaction) or to minimize the makespan.

i. Solve the job-shop problem for (small) instances obtained from the OR-library1:

For example, benchmark " la03.txt", (other benchmarks available in jobshop_benchmarks.zip,
together with file read_jshp_mat.co with a function to read this type of files) with a wotherhich
has the following data:

instance la03
Lawrence 10x5 instance (Table 3, instance 3); also called (setf3) or (F3)
10 5
1 23 2 45 0 82 4 84 3 38
2 21 1 29 0 18 4 41 3 50
2 38 3 54 4 16 0 52 1 52
4 37 0 54 2 74 1 62 3 57
4 57 0 81 1 61 3 68 2 30
4 81 0 79 1 89 2 89 3 11
3 33 2 20 0 91 4 20 1 66
4 24 1 84 0 32 2 55 3 8
4 56 0 7 3 54 2 64 1 39
4 40 1 83 0 19 2 8 3 7

specifies a problem with 10 jobs (rows) and 5 tasks each, where each row indicates for that job
the types of the machines in which the tasks are executed and their duration. For example job 1
is composed of 5 tasks, to be executed, respectively, in machines of type 1,2,0,4 and 3, with
duration 23, 45, 82, 84 and 38.

a) Consider the problem variants of satisfaction (finish all tasks before some time T) or
minimisation (minimise this time T).

ii. Consider a variant of the problem where all tasks of all jobs can be executed in any of M
machines of the same type (where N is a given number). Adapt the program you have
used to solve the job shop problem, and specify a function
cumulate(int o,int h, int maxCap, var<CP>{int}[] s, var<CP>{int}[] d, int [] r)

to constrain a set of tasks starting in time slots s and durations d, each consuming r units of
resources, to be executed between time slots o and h, so that in none of these time slots the
resources used by the tasks in execution exceeds maxCap.

a) Reformulate your solution to the jobshop instances, using this user-defined function
cumulate.

b) Replace your function (cumulate) by the system-defined global constraint
cumulative/6. Check the efficiency of the specialised propagation algorithms that is
used in the global constraint, compared with the propagation obtained by simple
decomposition of the global constraint (as you did in the spec of function cumulate).

1 ORlibrary URL: http://people.brunel.ac.uk/~mastjjb/jeb/info.html. Job shop benchmarks from library
(available in the course page) obtained from http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/jobshop1.txt

