
21 September 2017 Constraint Programming

Constraint Programming

- An overview

• Constraint Propagation

• Constraint Networks and Consistency Criteria

• Node- and Arc-consistency

• Enforcing Algorithms and their Complexity

0

21 September 2017 Constraint Programming

Constraint Propagation

- Non trivial constraint satisfaction problems are typically NP-complete and as
such there is no known algorithm to solve them in polynomial time.

- In practice, this means that solving them require some form of search.

- Given a problem with n variables each with k values in its domain, thenumber of
possible solutions is kn. As such brute force algorithms that explore all the
possibilities are doomed to be unpractical in instances with a relatively low
number of variables.

1 hour = 3.6 * 103 sec 1 year = 3.2 * 107 sec TOUniv = 4.7 * 1017 sec

1

10 20 30 40 50 60

2 1.0E-03 1.0E+00 1.1E+03 1.1E+06 1.1E+09 1.2E+12

3 5.9E-02 3.5E+03 2.1E+08 1.2E+13 7.2E+17 4.2E+22

4 1.0E+00 1.1E+06 1.2E+12 1.2E+18 1.3E+24 1.3E+30

5 9.8E+00 9.5E+07 9.3E+14 9.1E+21 8.9E+28 8.7E+35

6 6.0E+01 3.7E+09 2.2E+17 1.3E+25 8.1E+32 4.9E+40

n

k

nkkn

21 September 2017 Constraint Programming

Constraint Propagation

- Given the need for search it is very important to decrese the space of potential
solutions that have to be tested.

- This is a key goal of constraint propagation: take into account each and all of
the constraints of the problem to decrease the possible values a variable might
take.

- More specifically, constraint propagation uses constraints actively: the domain
of a variable should be decreased if it no longer makes it possible to satisfy the
constraint.

- Constraint propagation can be illustrated with the well known SENDMORY
cripto-arithmetic problem.

- We will use the model that constrains the variables in the sums of each column,
including the carries.

2

C4 C3 C2 C1
S E N D

+ M O R E
M O N E Y

21 September 2017 Constraint Programming

Constraint Propagation

- These are the variables and domains of the problem.

- With a naïve approach, and assuming that the search is only done in the digit
variables (not in the carries, that are implied) the size of the search space is
(since there are 8 variables, each with 10 values in the domain)

810 = 1073 741 824 ≈ 109

- Even if we consider during search that the variables are all different the size of
the search space is

10 ✕ 9 ✕ … ✕ 3 = 1 814 400 ≈ 2*106

3

C4 C3 C2 C1
S E N D

+ M O R E
M O N E Y

0. [S,E,N,D,M,O,R,Y] in 0..9
1. [C1, C2, C3, C4] in 0..1
2. alldif([S,E,N,D,M,O,R,Y])
3. M > 0
4. S > 0
5. D + E = Y + 10 * C1
6. N + R + C1 = E + 10 * C2
7. E + O + C2 = N + 10 * C3
8. S + M + C3 = O + 10 * C4
9. C4 = M

21 September 2017 Constraint Programming

Constraint Propagation

- We now analyse how to decrease the search space. We start by noing that both
C4 and M must be 1, given constraints 3, 9, and 1.

- In fact
• M must be greater than 0 (constraint 3);
• M must be equal to C4 (constraint 9);

- But since
• C4 may only be 0 or 1 (domain constraint 1)

It must be
• M = C4 = 1

4

C4 C3 C2 C1
S E N D

+ M O R E
M O N E Y

0. [S,E,N,D,M,O,R,Y] in 0..9
1. [C1, C2, C3, C4] in 0..1
2. alldif([S,E,N,D,M,O,R,Y])
3. M > 0
4. S > 0
5. D + E = Y + 10 * C1
6. N + R + C1 = E + 10 * C2
7. E + O + C2 = N + 10 * C3
8. S + M + C3 = O + 10 * C4
9. C4 = M

1 C3 C2 C1
S E N D

+ 1 O R E
1 O N E Y

21 September 2017 Constraint Programming

Constraint Propagation

- Now constraint 8 can be rewritten as S = O +9 - C3.

- Since S cannot be greater than 9, there are two possibilities here.
• S = 9 and O = C3; or
• S = 8 and O = C3 + 1

- Let us explore the first hypothesis. Since
• O ≠ 1 (as it must be different from M=1); and
• O = C3
the only remaining possibility, as C3 must be 0 or 1 is
• O = 0 ; and
• C3 = 0

5

1 C3 C2 C1
S E N D

+ 1 O R E
1 O N E Y

0. [S,E,N,D,M,O,R,Y] in 0..9
1. [C1, C2, C3, C4] in 0..1
2. alldif([S,E,N,D,M,O,R,Y])
3. M > 0
4. S > 0
5. D + E = Y + 10 * C1
6. N + R + C1 = E + 10 * C2
7. E + O + C2 = N + 10 * C3
8. S + 1 + C3 = O + 10
9. C4 = M

1 0 C2 C1
9 E N D

+ 1 0 R E
1 0 N E Y

21 September 2017 Constraint Programming

Constraint Propagation

- Now constraint 7 can be rewritten as E = N + C2.

- Since E and N must be different it must be the case that
• C2 = 1 and
• E = N + 1

6

1 0 C2 C1
9 E N D

+ 1 0 R E
1 0 N E Y

0. [S,E,N,D,M,O,R,Y] in 0..9
1. [C1, C2, C3, C4] in 0..1
2. alldif([S,E,N,D,M,O,R,Y])
3. M > 0
4. S > 0
5. D + E = Y + 10 * C1
6. N + R + C1 = E + 10 * C2
7. E + O + C2 = N + 10 * C3
8. S + 1 + C3 = O + 10
9. C4 = M

1 0 1 C1
9 E N D

+ 1 0 R E
1 0 N E Y

21 September 2017 Constraint Programming

Constraint Propagation

- Combining constraints 6 and 7 we obtain.
• R + 1 + C1 = 10
• R = 9 - C1

- Since we know that R cannot be 9 (the value assigned to S) given constraint 2,
then the only possible assignment is
• R = 8
• C1 = 1

7

1 0 1 C1
9 E N D

+ 1 0 R E
1 0 N E Y

0. [S,E,N,D,M,O,R,Y] in 0..9
1. [C1, C2, C3, C4] in 0..1
2. alldif([S,E,N,D,M,O,R,Y])
3. M > 0
4. S > 0
5. D + E = Y + 10 * C1
6. N + R + C1 = E + 10
7. N = E + 1
8. S + 1 + C3 = O + 10
9. C4 = M

1 0 1 1
9 E N D

+ 1 0 8 E
1 0 N E Y

21 September 2017 Constraint Programming

Constraint Propagation

- Now, we may note that
• Y ≥ 2 , since Y must be different from M and O (constraint 2)
• E ≤ 6, since N = E + 1 and both E and N must be less than 8, since they must

be different from S and R (constraint 2)
- Hence constraint 5 can be rewrittten as

• D = Y – E + 10; and hence
• D ≥ 2 - 6 + 10 = 6

- Now D can only take values 6 or 7 (given constraint 2), so we will try first
• D = 6

and rewrite constraint 5 as E = Y + 4.

8

1 0 1 1
9 E N D

+ 1 0 8 E
1 0 N E Y

0. [S,E,N,D,M,O,R,Y] in 0..9
1. [C1, C2, C3, C4] in 0..1
2. alldif([S,E,N,D,M,O,R,Y])
3. M > 0
4. S > 0
5. D + E = Y + 10
6. N + R + C1 = E + 10
7. N = E + 1
8. S + 1 + C3 = O + 10
9. C4 = M

1 0 1 1
9 E N 6

+ 1 0 8 E
1 0 N E Y

21 September 2017 Constraint Programming

Constraint Propagation

- But this is not possible, since in this case,
• E must be greater than 6, and
• N would be even greater, but it cannot since values 8 and 9 are taken by

variables R and S (constraint 2)

- Then we must backtrack and try instead
• D = 7

and rewrite constraint 5 as E = Y + 3.

9

1 0 1 1
9 E N 6

+ 1 0 8 E
1 0 N E Y

0. [S,E,N,D,M,O,R,Y] in 0..9
1. [C1, C2, C3, C4] in 0..1
2. alldif([S,E,N,D,M,O,R,Y])
3. M > 0
4. S > 0
5. E = Y + 4
6. N + R + C1 = E + 10
7. N = E + 1
8. S + 1 + C3 = O + 10
9. C4 = M

1 0 1 1
9 E N 7

+ 1 0 8 5
1 0 N E Y

21 September 2017 Constraint Programming

Constraint Propagation

- Trying E = 5 and propagating we get
• N = 6 (through constraint 7) and
• Y = 2 (through constraint 5)

thus solving the problem.

10

1 0 1 1
9 E N 7

+ 1 0 8 5
1 0 N E Y

0. [S,E,N,D,M,O,R,Y] in 0..9
1. [C1, C2, C3, C4] in 0..1
2. alldif([S,E,N,D,M,O,R,Y])
3. M > 0
4. S > 0
5. E = Y + 3
6. N + R + C1 = E + 10
7. N = E + 1
8. S + 1 + C3 = O + 10
9. C4 = M

1 0 1 1
9 5 6 7

+ 1 0 8 5
1 0 6 5 2

21 September 2017 Constraint Programming

Constraint Propagation

- In this case, the active use of the constraints of the problem allowed us to solve
the problem very efficiently
• Only 2 choice points
• Only one backtracking

- In general constraint propagation is at the heart of constraint Programming for
two main reasons:
• It decreases the size of the search space

• the size of the domains and the number of choice points
• It provides useful information to guide search

• NP problems still require heuristics, given their exponential size

- However, in this case, we adopted some special purpose reasoning to obtain
propagation, namely
• Combining several constraints
• Using adequate arithmetic knowledge

- These techniques will be used later, when dealing with global constraints.

11

21 September 2017 Constraint Programming

Constraint Propagation

- For the moment we may consider a simpler form of reasoning to achieve
constraint propagation, that will be illustrated with the 8-queens problem

- First we show the use of backtrack alone towards solving the problem, and
compare it later with the combined use of backtrack and constraint propagation.

- The simplest backtracking strategy uses constraints passively:

• Whenever a value is assigned a variable, the constraints whose variables
have their variables all assigned are checked for satisfaction

• If this is not the case, the search backtracks (chronological backtrack).

- This is a typical generate and test procedure

• Firstly, values are generated

• Secondly, the constraints are tested for satisfaction.

- Of course, tests should be done as soon as possible, i.e. a constraint is
checked whenever all its variables are assigned values.

12

13

Backtracking

Tests 0 Backtracks 0
21 September 2017 Constraint Programming

14

Backtracking

Tests 0 +1 = 1 Backtracks 0

Q1 \= Q2, L1+Q1 \= L2+Q2, L1+Q2 \= L2+Q1.

21 September 2017 Constraint Programming

15

Backtracking

Q1 \= Q2, L1+Q1 \= L2+Q2, L1+Q2 \= L2+Q1.

Tests 1 +1 = 2 Backtracks 0

21 September 2017 Constraint Programming

16

Backtracking

Q1 \= Q2, L1+Q1 \= L2+Q2, L1+Q2 \= L2+Q1.

Tests 2 +1 = 3 Backtracks 0
21 September 2017 Constraint Programming

17

Backtracking

Tests 3 +1 = 4 Backtracks 0
21 September 2017 Constraint Programming

18

Backtracking

Tests 4 +2 = 6 Backtracks 0
21 September 2017 Constraint Programming

19

Backtracking

Tests 6 + 1 = 7 Backtracks 0
21 September 2017 Constraint Programming

20

Backtracking

Tests 7 + 2 = 9 Backtracks 0
21 September 2017 Constraint Programming

21

Backtracking

Tests 9 + 2 = 11 Backtracks 0
21 September 2017 Constraint Programming

22

Backtracking

Tests 11 + 1 + 3 = 15 Backtracks 0
21 September 2017 Constraint Programming

23

Backtracking

Tests 15+1+4+2+4 = 26 Backtracks 0
21 September 2017 Constraint Programming

24

Backtracking

Tests 26+1 = 27 Backtracks 0
21 September 2017 Constraint Programming

25

Backtracking

Tests 27 + 3 = 30 Backtracks 0
21 September 2017 Constraint Programming

26

Backtracking

Tests 30+2 = 32 Backtracks 0
21 September 2017 Constraint Programming

27

Backtracking

Tests 32 + 4 = 36 Backtracks 0
21 September 2017 Constraint Programming

28

Backtracking

Tests 36 + 3 = 39 Backtracks 0
21 September 2017 Constraint Programming

29

Backtracking

Tests 39 + 1 = 40 Backtracks 0
21 September 2017 Constraint Programming

30

Backtracking

Tests 40 + 2 = 42 Backtracks 0
21 September 2017 Constraint Programming

31

Backtracking

Tests 42 + 3 = 45 Backtracks 0
21 September 2017 Constraint Programming

32

Backtracking

Tests 45 Backtracks 0+ 1 = 1

Q6 Fails

Backtracks
to

Q5

21 September 2017 Constraint Programming

33

Backtracking

Tests 45 Backtrackings 1
21 September 2017 Constraint Programming

34

Backtracking

Tests 45 + 1 = 46 Backtracks 1
21 September 2017 Constraint Programming

35

Backtracking

Tests 46 + 2 = 48 Backtracks 1
21 September 2017 Constraint Programming

36

Backtracking

Tests 48 + 3 = 51 Backtracks 1
21 September 2017 Constraint Programming

37

Backtracking

Tests 51 + 4 = 55 Backtracks 1
21 September 2017 Constraint Programming

38

Backtracking

Tests 55+1+3+2+4+3+1+2+3 = 74 Backtracks 1+2 = 3

Q6 Fails

Backtracks
to

Q5

and next to

Q4

21 September 2017 Constraint Programming

39

Backtracking

Tests 74+2+1+2+3+3= 85 Backtracks 3
21 September 2017 Constraint Programming

40

Backtracking

Tests 85 + 1 + 4 = 90 Backtracks 3
21 September 2017 Constraint Programming

41

Backtracking

Tests 90 +1+3+2+5 = 101 Backtracks 3
21 September 2017 Constraint Programming

42

Backtracking

Tests 101+1+5+2+4+3+6= 122 Backtracks 3
21 September 2017 Constraint Programming

43

Backtracking

Tests 122+1+5+2+6+3+6+4+1= 150 Backtracks 3+1=4

Q8 Fails

Backtracks
to

Q7

21 September 2017 Constraint Programming

44

Backtracking

Tests 150+1+2= 153 Backtracks 4+1=5

Q7 Fails

Backtracks
to

Q6

21 September 2017 Constraint Programming

45

Backtracking

Tests 153+3+1+2+3= 162 Backtracks 5+1=6

Q6 Fails

Backtracks
to

Q5

21 September 2017 Constraint Programming

46

Backtracking

Tests 162+2+4= 168 Backtracks 6
21 September 2017 Constraint Programming

47

Backtracking

Tests 168+1+3+2+5+3+1+2+3= 188 Backtracks 6+1 = 7

Q6 Fails

Backtracks
to

Q5

21 September 2017 Constraint Programming

48

Backtracking

Tests 188+1+2+3+4= 198 Backtracks 7+1=8

Q5 Fails

Backtracks
to

Q4

21 September 2017 Constraint Programming

49

Backtracking

Tests 198 + 3 = 201 Backtracks 8
21 September 2017 Constraint Programming

50

Backtracking

Tests 201+1+4 = 206 Backtracks 8
21 September 2017 Constraint Programming

51

Backtracking

Tests 206+1+3+2+5 = 217 Backtracks 8
21 September 2017 Constraint Programming

52

Backtracking

Tests 217+1+5+2+5+3+6 = 239 Backtracks 8
21 September 2017 Constraint Programming

53

Backtracking

Tests 239+1+5+2+4+3+6+7+7= 274 Backtracks 8+1 = 9

Q8 Fails

Backtracks
to

Q7

21 September 2017 Constraint Programming

54

Backtracking

Tests 274+1+2= 277 Backtracks 9+1=10

Q7 Fails

Backtracks
to

Q6

21 September 2017 Constraint Programming

55

Backtracking

Tests 277+3+1+2+3= 286 Backtracks 10+1=11

Q6 Fails

Backtracks
to

Q5

21 September 2017 Constraint Programming

56

Backtracking

Tests 286+2+4= 292 Backtracks 11
21 September 2017 Constraint Programming

57

Backtracking

Tests 292+1+3+2+5+3+1+2+3= 312 Backtracks 11+1=12

Q6 Fails

Backtracks
to

Q5

21 September 2017 Constraint Programming

58

Backtracking

Tests 312+1+2+3+4= 322 Backtracks 12+2=14

Q5 Fails

Backtracks
to

Q4

and next to

Q3

21 September 2017 Constraint Programming

59

Backtracking

Tests 322 + 2 = 324 Backtracks 14

Q1 = 1

Q2 = 3

Q3 = 5

Impossible !

21 September 2017 Constraint Programming

21 September 2017 Constraint Programming 60

Backtracking + Propagation

- A more efficient backtracking search strategy sees constraints as active
constructs and interleaves backtracking with constraint propagation:

• Whenever a variable is assigned a variable, the consequences of such
assignment are taken into account in all the constraints it apperas to narrow
the possible values of the variables not yet assigned.

• If for one such variable there are no values to chose from, then a failure
occurs and the search backtracks.

- This is a typical test and generate procedure

• Firstly, values are tested to check their possible use.

• Secondly, the values are assigned to the variables amopng the remaining
values.

- Clearly, the reasoning that is done should have the adequate complexity
otherwise the gains obtained from the narrowing of the search space are offset
by the costs of such narrowing.

61

Backtracking + Propagation

Tests 0 Backtracks 0
21 September 2017 Constraint Programming

62

Backtracking + Propagation

1 1

1

1

1

1

11

1

1

1

1

1

1

Tests 8 * 7 = 56 Backtracks 0

Q1 #\= Q2, L1+Q1 #\= L2+Q2, L1+Q2 #\= L2+Q1.

21 September 2017 Constraint Programming

63

Backtracking + Propagation

1 1

1

1

1

1

11

1

1

1

1

1

12

2

2

2

2

2

2

2

2

2

2

Tests 56 + 6 * 6 = 92 Backtracks 0
21 September 2017 Constraint Programming

64

Backtracking + Propagation

1 1

1

1

1

1

11

1

1

1

1

1

12

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

33

Tests 92 + 21 = 113 Backtracks 0
21 September 2017 Constraint Programming

21 September 2017 Constraint Programming 65

Backtracking + Propagation + Heuristics

- In both types of backtrack search (pure backtracking as well as in backtracking +
propagation) there is a need for heuristics.

- After all, in decision problems with n variables, a perfect heuristics would find a
solution (if there is one) in exactly n steps (i.e. with n decisions – polynomial time).

- Of course, there are no such perfect heuristics for non-trivial problems (this would
imply P = NP, a quite unlikely situation), but good heuristics can nonetheless
significantly decrease the search space. Typically a heuristics consists of

• Variable selection: The selection of the next variable to assign a value

• Value selection: Which value to assign to the variable

- The adoption of a backtrack + propagation search method allows better heuristics
to be used, that are not available in pure backtrack search methods.

- In particular a very simple heuristics, first-fail, is often very useful: whenever a
variable is restricted to take a single value, select that variable and value.

66

Backtracking + Propagation + Heuristics

1 1

1

1

1

1

11

1

1

1

1

1

12

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

33

Tests 92 + 21 = 113 Backtracks 0

Which
queen to

label?

21 September 2017 Constraint Programming

67

Backtracking + Propagation + Heuristics

1 1

1

1

1

1

11

1

1

1

1

1

12

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

33

Tests 92 + 21 = 113 Backtracks 0

Q6

may only
take value

4

21 September 2017 Constraint Programming

68

Backtracking + Propagation + Heuristics

1 1

1

1

1

1

11

1

1

1

1

1

12

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

33

6

6

6

6

6 6

Tests 113+3+3+3+4 = 126 Backtracks 0
21 September 2017 Constraint Programming

69

Backtracking + Propagation + Heuristics

1 1

1

1

1

1

11

1

1

1

1

1

12

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

33

6

6

2

6

6 6

Tests 126 Backtracks 0

Q8

may only
take value

7

21 September 2017 Constraint Programming

70

Backtracking + Propagation + Heuristics

1 1

1

1

1

1

11

1

1

1

1

1

12

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

33

6

6

2

6

6 6

Tests 126 Backtracks 0
21 September 2017 Constraint Programming

71

Backtracking + Propagation + Heuristics

1 1

1

1

1

1

11

1

1

1

1

1

12

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

33

6

6

2

6

6 6

8

8

Tests 126+2+2+2=132 Backtracks 0
21 September 2017 Constraint Programming

72

Backtracking + Propagation + Heuristics

1 1

1

1

1

1

11

1

1

1

1

1

12

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

33

6

6

2

6

6 6

8

8

Tests 132 Backtracks 0

Q4

may only
take value

8

21 September 2017 Constraint Programming

73

Backtracking + Propagation + Heuristics

1 1

1

1

1

1

11

1

1

1

1

1

12

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

33

6

6

2

6

6 6

8

8

Tests 132 Backtracks 0
21 September 2017 Constraint Programming

74

Backtracking + Propagation + Heuristics

1 1

1

1

1

1

11

1

1

1

1

1

12

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

33

6

6

2

6

6 6

8

8

4

Tests 132+2+1=135 Backtracks 0
21 September 2017 Constraint Programming

75

Backtracking + Propagation + Heuristics

1 1

1

1

1

1

11

1

1

1

1

1

12

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

33

6

6

2

6

6 6

8

8

4

Tests 135 Backtracks 0

Q5

may only
take value

2

21 September 2017 Constraint Programming

76

Backtracking + Propagation + Heuristics

1 1

1

1

1

1

11

1

1

1

1

1

12

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

33

6

6

2

6

6 6

8

8

4

Tests 135 Backtracks 0
21 September 2017 Constraint Programming

77

Backtracking + Propagation + Heuristics

1 1

1

1

1

1

11

1

1

1

1

1

12

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

33

6

6

2

6

6 6

8

8

4

5

Tests 135+1=136 Backtracks 0
21 September 2017 Constraint Programming

78

Backtracking + Propagation + Heuristics

1 1

1

1

1

1

11

1

1

1

1

1

12

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

33

6

6

2

6

6 6

8

8

4

5

Tests 136 Backtracks 0
21 September 2017 Constraint Programming

79

Backtracking + Propagation + Heuristics

1 1

1

1

1

1

11

1

1

1

1

1

12

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

33

6

6

2

6

6 6

8

8

4

5

Tests 136 Backtracks 0+1=1

Q7

may take NO
value

Failure!

Backtracks

... to Q3 !

21 September 2017 Constraint Programming

80

Backtracking + Propagation + Heuristics

1 1

1

1

1

1

11

1

1

1

1

1

12

2

2

2

2

2

2

2

2

2

2

3

33

3

3

3

3

3

Tests 136 Backtracks 1

3

Tests
136

(324)

Backtracks
1

(14)

Q1 = 1

Q2 = 3

Q3 = 5

Impossible !

21 September 2017 Constraint Programming

21 September 2017 Constraint Programming 81

Backtracking + Propagation + Heuristics

- The adoption of constraint propagation and backtrack is more efficient for three
main reasons:

• Early detection of Failure:

§ In this case, after placing queens Q1 = 1, Q2 = 3 and Q3 = 5, a failure is
detected without any backtracking.

• Relevant backtracking:

§ Although a failure is detected in Q7, backtracking is done to Q3, and to none
of the other queens (Q4, Q5, Q6 and Q8, that are not relevant).

§ With pure backtracking many backtracks were done to undo choices in these
queens.

• Heuristics:

§ Constraint Propagation makes it easy to adopt heuristics based on the
remaining values of the unassigned variables.

21 September 2017 Constraint Programming 82

Constraints: Basic Concepts

- To allow a study of constraint propagation in general, we start with some
definitions and notation:

Definition (Domain of a Variable):

• The domain of a variable is the set of values that can be assigned to that
variable.

• Given some variable x, its domain will be usually referred to as dom(x) or,
simply, Dx.

- Example: The N queens problem may be modelled by means of N variables, q1

to qn, all with the domain from 1 to n.

Dom(qi) = {1,2, ..., n} or qi :: 1..n.

- Note: In the first part of this course we will deal with Finite Domains, i.e.
domains that are finite sets of values.

21 September 2017 Constraint Programming 83

Constraints: Basic Concepts

- To formalise the notion of the state of a variable (i.e. its assignment with one of
the values in its domain) we have the following

Definition (Label):

• A label is a Variable-Value pair, where the Value is one of the elements of
the domain of the Variable.

- The notion of a partial solution, in which some of the variables of the problem
have already assigned values, is captured by the following

Definition (Compound Label):

• A compound label is a set of labels with distinct variables.

21 September 2017 Constraint Programming 84

Constraints: Basic Concepts

- We come now to the formal definition of a constraint

Definition (Constraint):

• Given a set of variables, a constraint is a set of compound labels on these
variables.

- Alternatively, a constraint may be defined simply as a relation, i.e. a subset of
the cartesian product of the domains of the variables involved in that constraint.

- For example, given a constraint cijk involving variables xi, xj and xk, then

cijk Í dom(xi) x dom(xj) x dom(Xk)

21 September 2017 Constraint Programming 85

Constraints: Basic Concepts

- Given a constraint c, the set of variables involved in that constraint is denoted
by vars(c).

- Simetrically, the set of constraints in which variable x participates is denoted by
cons(x).

- Notice that a constraint is a relation, not a function, so that it is always cij = cji.

- In practice, constraints may be specified by

• Extension: through an explicit enumeration of the allowed compound labels;

• Intension: through some predicate (or procedure) that determines the
allowed compound labels.

21 September 2017 Constraint Programming 86

Constraints: Basic Concepts

- For example, constraint c13 involving queens 1 and 3 in the 4-queens problem,
may be specified

• By extension (label form):

c13 = {{q1-1,q3-2},{q1-1,q3-4},{q1-2,q3-1},{q1-2,q3-3},

{q1-3,q3-2},{q1-3,q3-4},{q1-4,q3-1},{q1-4,q3-3}}.

or, in tuple (relational) form, omitting the variables

c13 = {<1,2>,<1,4>,<2,1>,<2,3>,<3,2>,<3,4>,<4,1>,<4,3>}.

• By intension:

c13 = (q1 ¹ q3) Ù (1+q1 ¹ 3+q3) Ù (3+q1 ¹ 1+q3).

21 September 2017 Constraint Programming 87

Constraints: Basic Concepts

Definition (Constraint Arity):

• The arity of some constraint c is the number of variables over which the
constraint is defined, i.e. the cardinality of set Vars(c).

- Despite the fact that constraints may have an arbitrary arity, an important
subset of the constraints is the set of binary constraints.

- The importance of such constraints is two-fold

• All constraints may be converted into binary constraints

• A number of concepts and algorithms are appropriate for these constraints.

21 September 2017 Constraint Programming 88

Constraints: Basic Concepts

Definition (Constraint Satisfaction 1):

• A compound label satisfies a constraint if their variables are the same and if
the compound label is a member of the constraint.

- In practice, it is convenient to generalise constraint satisfaction to compound
labels that strictly contain the constraint variables.

Definition (Constraint Satisfaction 2):

• A compound label satisfies a constraint if its variables contain the constraint
variables and the projection of the compound label to these variables is a
member of the constraint.

21 September 2017 Constraint Programming 89

Constraints: Basic Concepts

Definition (Constraint Satisfaction Problem):

• A constraint satisfaction problem is a triple <X, D, C> where

§ X is the set of variables of the problem

§ D is the domain(s) of its variables

§ C is the set of constraints of the problem

Definition (Problem Solution):

• A solution to a constraint satisfaction problem P: <X, D, C>, is a compound
label over the variables X of the problem, which satisfies all constraints in C.

21 September 2017 Constraint Programming 90

Constraints: Basic Concepts

Definition (Constrained Optimisation Problem):

• A constrained optimization problem (COP) is a tuple < X, D, C, F > where

§ X is the set of variables of the problem

§ D is the domain(s) of its variables

§ C is the set of constraints of the problem

§ F is a function on the variables of the problem

Definition (Problem Solution):

• S is a solution of a COP P: <X, D, C, F >, iff:

§ S is a solution of the corresponding CSP P’: <X, D, C>;

§ No other solution S’ has a better value for function F

21 September 2017 Constraint Programming 91

Constraints: Basic Concepts

- For convenience, the (binary) constraints of a problem may be considered as
forming a special constraint graph.

Definition (Constraint Graph or Constraint Network):

• The Constraint Graph or Constraint Network of a binary constraint
satisfaction problem is defined as follows

§ There is a node for each of the variables of the problem.

§ For each (non-trivial) constraint of the problem, involving one or two
variables, the graph contains an arc linking the corresponding nodes.

- When the problems include constraints with arbitrary arity, the Constraint
Network may be formed after converting these constraints on its binary
equivalent.

21 September 2017 Constraint Programming 92

Constraints: Basic Concepts

Example:

- The 4-queens problem may be specified by the following constraint network:

q1 in 1..4

q4 in 1..4

q3 in 1..4q2 in 1..4

C12

C23

C14

C24
C34

C13

c13:
<1,2>, <1,4>, <2,1>,
<2,3>, <3,2>, <3,4>,
<4,1>, <4,3>

cij:
qi \= qj
qi + i \= qj + j
qi - i \= qj - j

21 September 2017 Constraint Programming 93

Constraints: Basic Concepts

- An important issue to consider in solving a constraint satisfaction problem is the
existence of redundant values and labels in its constraints.

Definition (Redundant Value):

• A value in the domain of a variable is redundant, if it does not appear in any
solution of the problem.

Definition (Redundant Label):

• A compound label of a constraint is redundant if it is not the projection to
the constraint variables of a solution to the whole problem.

- Redundant values and labels increase the search space uselessly, and should
thus be avoided. There is no point in testing a value that does not appear in any
solution !

21 September 2017 Constraint Programming 94

Constraints: Basic Concepts

Example:

- The 4-queens problem only admits two solutions:

<2,4,1,3> and <3,1,4,2>.

- Hence,

• values 1 and 4 are redundant in the domain of variables q1 and q4; and

• values 2 and 3 are redundant in the domain of variables q2 and q3.

21 September 2017 Constraint Programming 95

Constraints: Basic Concepts

- Redundant values and labels increase the search space useless, and should
thus be avoided (there is no point in testing a value that does not appear in any
solution !). Hence, the following definitions:

Definition (Equivalent Problems):

• Two problems P1 = <X1, D1, C1> and P2 = <X2, D2, C2> are equivalent iff they
have the same variables (i.e. X1 = X2) and the same set of solutions.

- The “simplification” of a problem may also be formalised

Definition (Reduced Problem):

• A problem P = <X, D, C> is reduced to P’ = <X’, D’, C’> if

§ P and P’ are equivalent;

§ The domains D’ are included in D; and

§ The constraints C’ are at least as restrictive as those in C.

21 September 2017 Constraint Programming 96

Complexity of Search

- Clearly, the more reduced a problem is, the easier it is, in principle, to solve it.

- Given a problem P = <X, D, C> with n variables x1, .., xn the search space
where solutions can potentially be found (i.e. the leaves of the search tree with
compound labels {<x1-v1>, ..., <xn-vn>}) has cardinality

#S = #D1 * #D2 * ... * #Dn

- Assuming identical cardinality (or some kind of average of the domains size) for
all the variable domains, (#Di = d) the search space has cardinality

#S = dn

which is exponential on the “size” n of the problem.

21 September 2017 Constraint Programming 97

Complexity of Search

- Given a problem with initial cardinality d of its variables, and a reduced problem
whose domains have lower cardinality d’ (<d) the size of the potential search
space also decreases exponentially!

S’/S = d’n / dn = (d’/d)n

- Such exponential decrease may be very significant for “reasonably” large
values of n, as shown in the table.

10 20 30 40 50 60 70 80 90 100
7 6 4.6716 21.824 101.95 476.29 2225 10395 48560 226852 1E+06 5E+06
6 5 6.1917 38.338 237.38 1469.8 9100.4 56348 348889 2E+06 1E+07 8E+07
5 4 9.3132 86.736 807.79 7523.2 70065 652530 6E+06 6E+07 5E+08 5E+09
4 3 17.758 315.34 5599.7 99437 2E+06 3E+07 6E+08 1E+10 2E+11 3E+12
3 2 57.665 3325.3 191751 1E+07 6E+08 4E+10 2E+12 1E+14 7E+15 4E+17
d d'

S/S'
n

21 September 2017 Constraint Programming 98

Propagation in Search

- The effort in reducing the domains must be considered within the general
scheme to solve the problem.

- In Constraint (Logic) Programming, the specification of the constraints precedes
the enumeration of the variables.

Problem(Vars):-

Declaration of Variables and Domains,

Specification of Constraints,

Labelling of the Variables.

- In general, search is performed exclusively on the labelling of the variables.

- The execution model alternates enumeration with propagation, making it
possible to reduce the problem at various stages of the solving process.

21 September 2017 Constraint Programming 99

Complexity of Search

- In complete search methods, that deal with search through backtracking, the
solving method is constructive and incremental, whereby a compound label is
completed (constructive) throughout the solving process, one variable at a time
(incremental), until a solution is reached.

- However, one must check that, at every step in the construction of a solution,
the resulting label still has the potential to reach a complete solution.

Definition (k-Partial Solution):

• A k-partial solution of a constraint solving problem P = <X, D, C>, is a
compound label on a subset of k of its variables, Xk, that satisfies all the
constraints in C whose variables are included in Xk.

21 September 2017 Constraint Programming 100

Propagation in Search

- Given a problem with n variables x1 to xn, and assuming a lexicographical
variable/value heuristics, the execution model follows the following pattern to
incrementally extend partial solutions until a complete solution is obtained:

Declaration of Variables and Domains,
Specification of Constraints,

propagation, % reduction of the whole problem

% Labelling of Variables,

label(x1), % variable/value selection with backtraking

propagation, % reduction of problem {x2 ... xn}

label(x2),

propagation, % reduction of problem {x3 ... xn}

...

label(xn-1)

propagation, % reduction of problem {xn}

label(xn)

21 September 2017 Constraint Programming 101

Complexity of Search

- In practice, this potential narrowing of the search space has a cost involved in
finding the redundant values (and labels).

- A detailed analysis of the costs and benefits in the general case is extremely
complex, since the process depends highly on the instances of the problem to
be solved.

- However, it is reasonable to assume that the computational effort spent on
problem reduction is not proportional to the reduction achieved, becoming less
and less efficient.

- After some point, the gain obtained by the reduction of the search space does
not compensate the extra effort required to achieve such reduction.

21 September 2017 Constraint Programming 102

Complexity of Search

- Qualitatively, this process may be represented by means of the following picture

R - Reduction Cost

S- Search Cost

R+S
Combined Cost

Effort spent in solving the problem

Amount of Reduction Achieved

21 September 2017 Constraint Programming 103

Propagation: Consistency Criteria

- Consistency criteria enable to establish redundant values in the variables
domains in an indirect form, i.e. requiring no prior knowledge on the set of
problem solutions.

- Hence, procedures that maintain these criteria during the “propagation” phases,
will eliminate redundant values and so decrease the search space on the
variables yet to be enumerated.

- For constraint satisfaction problems with binary constraints, the most usual
criteria are, in increasingly complexity order,

§ Node Consistency

§ Arc Consistency

§ Path Consistency

§ i-Consistency

21 September 2017 Constraint Programming 104

Node - Consistency

Definition (Node Consistency):

• A constraint satisfaction problem is node-consistent if no value in the
domain of its variables violates the unary constraints.

- This criterion may seem both obvious and useless. After all, who would specify
a domain that violates the unary constraints ?!

- However, this criterion must be regarded within the context of the execution
model that incrementally completes partial solutions.

§ Constraints that were not unary in the initial problem become so when one
(or more) variables are enumerated.

21 September 2017 Constraint Programming 105

Node - Consistency

Example:

- After the initial posting of the
constraints, the constraint
network model at the right
represents the 4-queens
problem.

- After enumeration of variable
q1, i.e. q1=1, constraints c12,
c13 and c14 become unary !!

q1 in 1..4

q4 in 1..4

q3 in 1..4q2 in 1..4

c12

c23

c14

c24
c34

c13

q4 in 1..4

q3 in 1..4q2 in 1..4
c23

c24
c34

q2 ¹ 1, 2 q3 ¹ 1, 3

q4 ¹ 1, 4

21 September 2017 Constraint Programming 106

Node - Consistency

- An algorithm that maintains node consistency should remove from the domains
of the “future” variables the appropriate values.

- Maintaining node consistency thus achieves the following domain reduction.

q4 in 2,3

q3 in 2,4q2 in 3,4
c23

c24
C34

q2 ¹ 1,2 q3 ¹ 1,3

q4 ¹ 1,4

q4 ¹ 1,4

1 1
1 1
1 1

q2 ¹ 1,2

q3 ¹ 1,3

21 September 2017 Constraint Programming 107

Enforcing Node-Consistency

Definition (Node Consistency):

• A constraint satisfaction problem is node-consistent if no value in the
domain of its variables violates the unary constraints.

Enforcing node consistency: Algorithm NC-1

• Node-consistency can be enforced by the very simple algorithm shown
below:

procedure NC-1(V, D, C);
for x in V

for v in Dx do
for Cx in {C: Vars(Cx) = {x}} do

if not satisfy(x-v, Cx) then
Dx <- Dx \ {v}

end for
end for

end for
end procedure

21 September 2017 Constraint Programming 108

Enforcing Node-Consistency

Space Complexity of NC-1: O(nd).

• Assuming n variables in the problem, each with d values in its domain, and
assuming that the variable’s domains are represented by extension, a space
nd is required to keep explicitely the domains of the variables.

• Algorithm NC-1 does not require additional space, so its space complexity is
O(nd).

Time Complexity of NC-1: O(nd).

• Assuming n variables in the problem, each with d values in its domain, and
taking into account that each value is evaluated one single time, it is easy to
conclude that algorithm NC-1 has time complexity O(nd).

- The low complexity, both temporal and spatial, of algorithm NC-1, makes it
suitable to be used in virtual all situations by a solver, despite the low pruning
power of node-consistency.

21 September 2017 Constraint Programming 109

Arc - Consistency

- A more demanding and complex criterion of consistency is that of arc-
consistency

Definition (Arc Consistency):

• A constraint satisfaction problem is arc-consistent if,

§ It is node-consistent; and

§ For every label xi-vi of every variable xi, and for all constraints cij, defined
over variables xi and xj, there must exist a value vj that supports vi, i.e.
such that the compound label {xi-vi, xj-vj} satisfies constraint cij.

21 September 2017 Constraint Programming 110

Arc - Consistency

Example:

- After enumeration of variable q1=1, and making the network node-consistent,
the 4 queens problem has the following constraint network:

- However, label q2-3 has no support in variable q3, since neither the compound
label {q2-3 , q3-2} nor {q2-3 , q3-4} will satisfy constraint C23.

- Therefore, value 3 can be safely removed from the domain of q2.

q4 in 2,3

q3 in 2,4Q2 in 3,4
C23

C24
C34

q2 ¹ 1,2 q3 ¹ 1,3

q4 ¹ 1,4

1 1
1 1
1 1 q4 ¹ 1,4

q2 ¹ 1,2

q3 ¹ 1,3

21 September 2017 Constraint Programming 111

Arc - Consistency

Example (cont.):

- In fact, none (!) of the values of q3 has support in variables q2 and q4, as
shown below:

§ Label q3-4 has no support in variable q2, since none of the compound
labels {q2-3, q3-4} and {q2-4, q3-4} satisfy constraint c23.

§ Label q3-2 has no support in variable q4, since none of the compound
labels {q3-2, q4-2} and {q3-2, q4-3} satisfy constraint c34.

q4 ¹ 1,4

1 1
1 1
1 1

q2 ¹ 1,2

q3 ¹ 1,3

21 September 2017 Constraint Programming 112

Arc - Consistency

Example (cont.):
- Since none of the values from the domain of q3 has support in variables q2

and q4, maintenance of arc-consistency empties the domain of q3!

- Hence, maintenance of arc-consistency not only prunes the domain of the
variables but also antecipates the detection of unsatisfiability in variable q3 !

- In this case, backtracking of q1=1 may be started even before the enumeration
of variable q2.

- Given the good trade-of between pruning power and simplicity of arc-
consistency, a number of algorithms have been proposed to maintain it.

q4 ¹ 1,4

1 1
1 1
1 1

q2 ¹ 1,2

q3 ¹ 1,3

21 September 2017 Constraint Programming 113

Enforcing Arc-Consistency: AC-1

Definition (Arc Consistency):

• A constraint satisfaction problem is arc-consistent if it is node-consistent and
for every label xi-vi of every variable xi, and for all constraints cij, defined over
variables xi and xj, there must exist a value vj that supports vi, i.e. such that
the compound label {xi-vi, xj-vj} satisfies constraint cij.

Enforcing arc-consistency: Algorithm AC-1

• The following simple (and inefficient) algorithm enforces arc-consistency:
procedure AC-1(V, D, C);

NC-1(V,D,C); % node consistency
Q = {aij | cij Î C Ú cji Î C }; % see note
repeat

changed <- false;
for aij in Q do

changed <- changed or revise_dom(aij,V,D,C)
end for

until not change
end procedure

21 September 2017 Constraint Programming 114

Enforcing Arc-Consistency: AC-1

Revise-Domain
- Algorithm AC-1 (and others) uses predicate revise-domain on some arc aij,

that succeeds if some value is removed from the domain of variable xi (a side-
effect of the predicate).

predicate revise_dom(aij,V,D,C): Boolean;
success <- false;
for v in dom(xi) do

if ¬ $vj in dom(xj): satisfies({xi-v,xj-vj},cij) then
dom(xi) <- dom(xi) \ {v};
success <- true;

end if
end for
revise_dom <- success;

end predicate

21 September 2017 Constraint Programming 115

Enforcing Arc-Consistency: AC-1

Space Complexity of AC-1: O(ad2)
- AC-1 must maintain a queue Q, with maximum size 2a. Hence the inherent

spacial complexity of AC-1 is O(a).

- To this space, one has to add the space required to represent the domains
O(nd) and the constraints of the problem. Assuming a constraints and d
values in each variable domain the space required is O(ad2), and the total
space requirement of

O(nd + ad2)

which dominates O(a).

- For “dense” constraint networks”, a » n2/2. This is then the dominant term, and
the space complexity becomes

O(ad2) = O(n2d2)

21 September 2017 Constraint Programming 116

Enforcing Arc-Consistency: AC-1

Time Complexity of AC-1: O(nad3)

- Assuming n variables in the problem, each with d values in its domain, and a
total of a arcs, in the worst case, predicate revise_dom, checks d2 pairs of
values.

- The number of arcs aij in queue Q is 2a (2 directed arcs aij and aji are
considered for each constraint cij). For each value removed from one domain,
revise_dom is called 2a times.

- In the worst case, only one value from one variable is removed in each cycle,
and the cycle is executed nd times.

- Therefore, the worst-case time complexity of AC-1 is O(d2 *2a*nd), i.e.

O(nad3)

21 September 2017 Constraint Programming 117

Enforcing Arc-Consistency: AC-3

Enforcing node consistency: Algorithm AC-3

- In AC-1, whenever a value vi is removed from the domain of some xi, all arcs are
re-examined. However, only the arcs aki (for k ¹ i) should be re-examined.

- This is because the removal of vi may eliminate the support from some value vk of
some variable xk for which there is a constraint cik (or cki).

- Such inefficiency of AC-1 is avoided in AC-3 below

procedure AC-3(V, D, C);
NC-1(V,D,C); % node consistency
Q = {aij | cij Î C Ú cji Î C };
while Q ¹ Æ do

Q = Q \ {aij} % removes an element from Q
if revise_dom(aij,V,D,C) then % revised xi

Q = Q È {aki | (cik Î C Ú cki Î C)Ù k ¹ i}
end if

end while
end procedure

21 September 2017 Constraint Programming 118

Enforcing Arc-Consistency: AC-3

Space Complexity of AC-3: O(ad2)

- AC-3 has the same requirements than AC-1, and the same worst-case space
complexity of O(ad2) » O(n2d2), due to the representation of constraints by
extension.

Time Complexity of AC-3: O(ad3)

- Each arc aki is only added to Q when some value vi is removed from the
domain of xi.

- In total, each of the 2a arcs may be added to Q (and removed from Q) d times.

- Every time that an arc is removed, predicate revise_dom is called, to check at
most d2 pairs of values.

- All things considered, and in contrast with AC-1, with temporal complexity
O(nad3), the time complexity of AC-3, in the worst case, is O(2ad * d2), i.e.

O(ad3)

21 September 2017 Constraint Programming 119

Enforcing Arc-Consistency: AC-4

Counting Supports: AC-4

• Every time a value vi is removed from the domain of some variable xi, all arcs
aki (k ¹ i) leading to that variable are re-examined.

• Nevertheless, only some of these arcs should be examined.

• Although the removal of vi may eliminate one support for some value vk of
another variable xk (given constraint cki), other values in the domain of xi may
support the pair xk-vk!

- This idea is exploited in algorithm AC-4, that uses a number of new data-
structures to count supporting values, which contrary to AC-3, with time
complexity of O(ad2), achieves a time-complexity of

O(ad2)

- This is in fact an optimal assymptotical worst-case complexity, since
checking all the pairs of values in all the binary constraints require ad2

operations.

21 September 2017 Constraint Programming 120

Enforcing Arc-Consistency: AC-4

Detecting last Supports: AC-6

• Whereas AC-4 maintains a number of counters to check whether there are
support for variables in the domain, the same effect can be achieved by simply
maintaining one value that witnesses this support.

• Every time this witness is removed, a next witness is sought.

• Hence there is no need to maintain expensive counters, and the goal of
maintaining arc-consistency can be made more efficiently.

- This is the idea exploited in algorithm AC-6, that uses “lighter” data-structures
to detect next supporting values which, like AC-4, has a time complexity of

O(ad2)

- Again this was already seen as the optimal assymptotical worst-case
complexity, and AC-6 could not beat it.

- However …

21 September 2017 Constraint Programming 121

Assessing Typical Complexity

Typical complexity of AC-x algorithms

- The worst-case time complexity that can be inferred from the algorithms that
maintain arc-consistency do not give a precise idea of their average behaviour in
typical situations. For such study, either one tests the algorithms in:

• A set of “benchmarks”, i.e. problems that are supposedly representative of
everyday situations (e.g. N-queens); or

• Randomly generated instances parameterised by

§ their size (number of variables and cardinality of the domains) ; and

§ their difficulty measured by

• density of the constraint network - % existing/ possible constraints; and

• tightness of the constraints - % of allowed / all tuples.

- The study of these issues has led to the conclusion that constraint satisfaction
problems often exhibit a phase transition, which should be taken into account in the
study of the algorithms.

21 September 2017 Constraint Programming 122

Assessing Typical Complexity: Phase Transition

- This phase transition typically contains the most difficult instances of the
problem, and separates the instances that are trivially satisfied from those that
are trivially insatisfiable.

- For example, in SAT problems, it has been found that the phase transition
occurs when the ratio of clauses to variables is around 4.3.

0 5 10 15

clauses / # variables

d
i
f
f
i
c
u
l
t
y

4.3

21 September 2017 Constraint Programming 123

Assessing Typical Complexity

- Typical Complexity of algorithms AC-3, AC-4 e AC-6
- (N-queens)

0

2000

4000

6000

8000

10000

12000

14000

16000

4 5 6 7 8 9 10 11

#
 t

es
ts

 a
nd

 o
pe

ra
tio

ns

AC-3
AC-4
AC-6

queens

21 September 2017 Constraint Programming 124

Assessing Typical Complexity

Typical Complexity of algorithms AC-3, AC-4 e AC-6
(randomly generated problems)

n = 12 variables, d= 16 values, density = 50%

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000
22000

5 10 15 20 25 30 35 40 45 50 60 70 80

#
 t

es
ts

 a
nd

 o
pe

ra
ti

on
s

AC-3
AC-4
AC-6

Tightness (%)

21 September 2017 Constraint Programming 125

Path-Consistency

- The following constraint network is obviously inconsistent:

- Nevertheless, it is arc-consistent: every binary constraint of difference (≠) is
arc-consistent whenever the constraint variables have at least 2 elements in
their domains.

- However, is is not path-consistent: no label {<a-va>, <b-vb>} that is consistent
(i.e. does not violate any constraint) can be extended to the third variable c.

{<a-1>, <b-2>} ® c ≠ 1, 2 ; {<a-1>, <b-2>} ® c ≠1, 2

- This property is captured by the notion of path-consistency.

1 , 2

1 , 2 1 , 2

≠

≠

≠

a

b c

