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Constraint Programming 

-  Symmetries in CP 

•  Types of Symmetries 

• Symmetry Detection and Breaking 

• Symmetry Breaking: Reformulation 

• Symmetry Breaking: Before and During Search 
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Types of Symmetries 

Types of Symmetries 

-  Although, in an abstract way, symmetries are well defined as permutations, 
different types of symmetries have been defined in Constraint Programming, 
namely because the methods used to break them are not completely general. 

-  In the beginning we gave the informal definition below: 

§  a symmetry is some particular transformation of the solution of a problem 
into another solution of the problem, or from a non-solution into a another 
non-solution. 

-  This definition, is not only quite informal but also not very useful for direct 
application, since the purpose of defining symmetries is exactly to avoid 
computing all the symmetric solutions. 

-  To formalise symmetries, let us consider them not only defined on the set of 
solutions, but also as a property of the problem. These notions are captured in 
the following definitions. 
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Types of Symmetries 

Solution symmetries 

-  A solution symmetry is a permutation of the set of <variable,value> pairs which 
preserves the set of solutions. 

Problem symmetries 

-  A problem symmetry is a permutation of the set of <variable,value> pairs which 
preserves the set of constraints. 

-  A number of other definitions are stricter than the general definitions above.  

-  In particular, two kinds of symmetries are very important as they are often 
present and detectable in many problems. 
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Types of Symmetries 

-  Value Symmetries 

 A value symmetry is a symmetry s that is a permutation on the values of the 
variables of the problem, i.e. 

s(x = a)  ≡  x = s(a)  

-  These symmetries define permutations of values that are applicable to all 
variables. For example, the symmetry v in n*n board problems are value 
symmetries (the case for n = 4 is shown below) 

id v 

vi → vj 

1 → 4 

2 → 3 

3 → 2 

4 → 1 
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Types of Symmetries 

-  The next definition is dual of the value symmetry. 

Variable Symmetries 

 A variable symmetry is a symmetry s that is a permutation on the variables of 
the problem, i.e. 

s(x = a)  ≡  s(x) = a  

-  These symmetries define permutations of variables that are applicable to all 
values. For example, the symmetry h in n*n board problems are value 
symmetries (the case for n = 4 is shown below)  

id 

xi → xj 

x1 → x4 

x2 → x3 

x3 → x2 

x4 → x1 h: 
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Types of Symmetries 

-  A number of other definitions are more strict than the general definitions above. 
The next definitions are value symmetries that are a limited form of solution 
symmetry, 

Interchangeable Symmetries 

 Two values a and b for a variable v are fully interchangeable iff every solution to 
the CSP containing the assignment v=a remain a solution when b is substituted 
for a, and vice-versa. 

-  A similar restriction for problem symmetry can be defined 

Neighbourhood Interchangeable Symmetries 

 Two values a and b for a variable v are neighbourhood interchangeable iff for 
every constraint C of the problem on variable v, the set of variable-value pairs 
that satisfy the constraint with v = a, is the same of set of variable-value pairs 
that satisfy the constraint with v = b. 
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Types of Symmetries 

-  The next definitions exploit further the previous ideas of Interchangeablility. 

Semantic Symmetries (satisfiability) 

-  Two values a and b are semantically symmetric for satisfiability iff whenever 
there is a solution with v=a there is a solution with v = b. 

-  The above definition is useful in the case we are interested in a single solution, 
in which case we can remove one of the values. However, the solutions 
obtained with v=a can be very different from those with v=b, with no obvious 
mapping. In optimisation problems the following symmetry is more important 

Semantic Symmetries (all solutions) 

-  Two values a and b are semantically symmetric for all solutions iff there is a 
mapping from whatever solution with v=a into a solution with v = b, and vice-
versa. 

-  In some cases, especially for breaking symmetries during search it is important 
to define symmetries over partial assignments. 
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Symmetry Detection and Symmetry Breaking 
 

-  There are two main issues in dealing with symmetries in Constraint 
Programming, namely 

Symmetry Detection 

-  Symmetries have to be detected, before they can be efficiently addressed. In 
some cases this is an obvious task, in others, specially when their number is 
very large, this is not so easy. We will later address the problem of automated 
detection of symmetries, but for the moment we will assume the symmetries are 
known. 

Symmetry Breaking 

-  Once detected, methods have been studied to take advantadge of the  
symetries, namely to avoid the exploitation of useless parts of the search tree, 
whose positive or negative findings can be obtained by applying symmatrical 
reasoning on the exploited parts. 
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Symmetry Breaking 

-  Breaking the symmetries can be performed by a number of techniques. They 
can be classified as follows: 

Problem Reformulation 

-  A new model of the problem may be studied, that eliminates some  (or all) of the 
symmetries that were found. Of course it is assumed that the new and the old 
model are equivalent, i.e. they lead to the same solutions (modulo symmetry). 
Reformulation is highly problem-dependent, so there are not many general 
purpose techniques available. We will nevertheless discuss several problems 
dealing with sets. 

Addition of Symmetry Breaking Constraints 

-  When symmetries are detected in a model, additional constraint may be added 
to the model in order to eliminate these symmmetries. Such addition can be 
static (before execution) or dynamic (during execution). 
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Symmetry Breaking by Reformulation 

Sets 

-  By nature, problem reformulation does not lead to many general purpose 
techniques for symmetry breaking through  problem reformulation. An important 
exception is the dealing with sets. 

-  If one wants to find a set of k objects in some finite domain that satisfy some 
constraints, a simple way to model this requisite is to create k finite-domain 
variables, and assign them values in their domain that satisfy the constraints. 

-  In fact, this is not enough, since sets do not accept repetitions. But this can be 
easily imposed by an all-different constraint over the k variables. 

-  However, this is not sufficient in that the resulting model has a huge number of 
undesirable symmetries. In fact, if there are k variables, any permutation of the 
variables is a valid symmetry, and hence there are k! such undesirable  
variable-symmetries. 

-  We can see how to address this reformulation problem with an example. 
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Symmetry Breaking by Reformulation 

Example: Find a set of 3 elements in the range 1..7.  

-  In this case, solutions < x1 = 2, x2 = 4, x3 = 7 > and < x1 = 7, x2 = 4, x3 = 2 > are 
exactly the same, in that the intended set is composed by values {2,4,7}. 

-  Although these symmetries can be solved by adding symmetry breaking 
constraints, another way to break them is by means of reformulating the 
problem with sets. 

-  Rather than finding the value for k finite domain variables, the problem is 
reformulated as finding a set with k elements.  

-  In addition to specialised modelling of sets available in languages such as 
Conjunto and Cardinal, a simple general technique to represent a set is by 
means of Boolean variables, one for each possible value in the domain of the 
set.  

-  Finding the set is to find an assignment of k 1’s to these variables, that 
represent the elements in the set. 
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Symmetry Breaking by Reformulation 

Example (cont) : Find a set of 3 elements in the range 1..7.  

i.  Boolean variables to represent the set: b1, .., b7. 

ii.  Cardinality of the set:  b1+ b2 + ... + b7 #= 3. 

iii.  Hence, the solution {2,4,7} is univocally represented as  

 b2 = b4 = b7 = 1    and      b1 = b3 = b5 = b6 = 0  

-  In addition to these variables we should add some channeling constraints to 
map the set representation into information about set membership. 

-  In this case, such mapping can be done with k reified constraints: 

i ∈ S #<=> bi #= 1. 
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Symmetry Breaking by Reformulation 

-  In other cases, set variables are not so easy to implement. See the following 
example from Bioinformatics  

Example: A number of yeasts y1, ..., ym, is to be identified through digestion of a 
number of enzymes e1, ..., en. An enzyme may or may not differentiate a pair of 
yeasts yi-yj. The problem consists of finding a minimal set of enzymes that, for 
every pair of yeasts, contains an enzyme that differentiate them. 

-  A  straightforward model of the problem is to assign for every enzyme ek, a set 
Ek of booleans skij, 1 <= i < m, i < j <= where each skij indicates whether enzyme 
ek differentiates yeasts yi and yj. Now the problem is cast into a set covering 
problem – find a set X of enzymes that covers all pairs of yeasts. 

-  With a Boolean set formulation, the set X is represented by Booleans x1, ..., xk, 
(denoting whether enzymes x1, ..., xk are selected) such that the following k 
constraints are satisfied 

∀1 ≤ i < m , ∀i < j ≤ m ∑ k  xk* skij = 1  

-  Now, the minimization of the cardinality of such sets is obtained with 

min ∑ k xk 
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Symmetry Breaking by Reformulation 

-  The solution proposed already assumes the set of enzymes to be represented 
by the Boolean variables xi. 

-  There are however some drawbacks with this Boolean sets representation. If a 
set of k elements with domain 1..d is represented by d Boolean variables, the 
search space is 2d. With a representation with k finite domain variables, the 
search space is dk, which is usually much lower.  
§  For d = 30 and k = 4, we have 2d  ≈ 109 and 30k ≈ 8.1*105. 
§  In our example it is d = 300 and k = 3, i.e. 2300  ≈ 2*1090 and 3003 ≈ 2.7*107 

-  Moreover, there is a global constraint, nvalue(List, N), that associates a 
List of variables with the number N of different values in that list, that can be 
exploited in a finite domain representation. 

-  All that is needed is to create, for each of the pairs yi - yj, a variable zi,j whose 
domain is the id of the enzymes ek that differentiate them. Now the problem is 
simply modelled by 

min N   such that     nvalue([z1,2, z1,3, ...., zm-1,m], N) 
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Symmetry Breaking by Reformulation 

-  Although this model is much more efficient than the Boolean alternative, still 
there is a huge number of symmetries that are not considered in the nvalue 
global constraint. 

-  For example, and for a simplified problem with only 4 yeasts (6 yeast pairs) and 
5 enzymes, a number of solutions are symmetric. For example, the lists  

[1,4,1,4,4,1]    and     [4,4,1,4,1,1]  

 represent the same set of enzymes {e1, e4}. 

-  In the worst case for a set with N enzymes chosen from a total of k available 
enzymes there are Ck

N potential representations of the same set. 

-  In our case, the minimal sets have 3 enzymes, chosen from 300 possibilities, so 
the number of symmetries can be as high as C300

3  ≈ 4.5 * 106. 

-  This large number of symmetries in fact prevents this model to find alternative 
sets of enzymes, since the same set is obtained a huge number of times 
(although less than the worst case of 4.5 million). 
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Symmetry Breaking before Search 

-  Another approach to break symmetries consists of adding symmetry breaking 
constraints to the problem, before starting the search. 

-  This is a technique that has been used ad hoc in many applications, the best 
example of it is possibly in the management of sets represented by finite 
domain variables. 

-  Given a set S of k elements, these can be modelled by k variables s1, ... , sk that 
will be assigned to the (different) elements  of the set. 

-  Of course any permutation of variables is acceptable, and hence there are k! 
variable symmetric solutions.  

-  For example, for the set {1,2,3}  the following solutions are possible (given as 
tuples for variables <s1,s2,s3>   

<1,2,3>, <1,3,2> , <2,1,3>, <2,3,1>, <3,1,2> and <3,2,1> 

-  Since any of these solutions are acceptable, one may consider one of the 
solutions as “canonical”, whereas the others can be obtained by symmetry 
transformation. 
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Symmetry Breaking before Search 

-  When there is no priviliged solution, one may simply impose an arbitrary 
solution as canonic. Usually, the canonical solution imposes an increased 
ordering on the lexicographic order of the variables, i.e. 

x1 < x2 < x3  

 i.e. the canonical solution is <1,2,3>. 

-  This technique may be used in applications envolving several sets, such as the 
well known example of the  

Social Golphers problem (g,s,w): 

-  The goal is to schedule g*s golphers, in g groups of s players each, such that 
they can play for w weeks and two players never play in the same group more 
than once. 

-  This problem presents a huge number of symmetries that prevents an efficeint 
execution, even for small numbers of g, s and w, unless these symmetries are 
not broken. To simplify, we will use the values g = 3, s= 2, and w = 4. 



24 October 2016 Constraint Programming 18 

Symmetry Breaking before Search 

-  Value symmetries [ (g*s)! ]: If a solution assigns to the variables x1, x2 , ... , xn 
(with n = g*s) different values in the range 1, 2, ..., n, any permutation of these 
values is also a solution.  

 This is a typical situation in sport tournaments: a schedule is prepared in terms 
of virtual teams t1, t2, tn, which are assigned an arbitrary assignmnet (by a 
random selection – e.g drawing the names from a box)   

-  Group Symmetries [ w*g* (s !) ]: : Within each group, a set, the elements can 
be permuted 

-  Group Symmetries within each weak [w*(g!)]:  the order of the groups in each 
week is arbitrary. 

-  Week Symmetries [w!] : The weeks are arbitrarily permuted. 

-  All together, there are (w!)  *  w*(g!)  *  w*g*(s!)  * (s*g)! Symmetries. This may 
be a huge number. Even in the small instances that is considered here, there 
are 4! * 4*3!  * 4*3* 2! * (3*2!) = 24*24*24*720 ≈ 107 symmetries. 
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Symmetry Breaking before Search 

-  A number of ad hoc constraints can be used to eliminate these constraints. Let 
us represent a solution by variables xwgp where w is the week, g the group and p 
the position in the group of the player 

{ x111 , x112 } ,  { x121 , x122 } ,  { x131 , x132 } 

{ x211 , x212 } ,  { x221 , x222 } ,  { x231 , x232 } 

{ x311 , x312 } ,  { x321 , x322 } ,  { x331 , x332 } 

{ x411 , x412 } ,  { x421 , x422 } ,  { x431 , x432 } 

-  Taking into account an implicit all-different constraint on the variables in each 
week: 

Value symmetries:  

 Some of them can be broken by fixing the values for the first week, which are 
completely arbitrary  as, for example, { 1 , 2 } ,  { 3 , 4 } ,  { 5, 6 } 
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Symmetry Breaking before Search 

Group symmetries:  

-  The standard technique can be applied to sort the sets in increasing order, by 
adding constraints xwgp < xwgq for all ellements (p < q in 1..2) of all groups (g in 
1..3) of all weeks (w in 1..4). 

Group in Weeks symmetries:  

 Taking into account that the first elements of the groups in the same week must 
be different and smaller than the other elements of the corresponding groups, a 
standard order of the groups may be imposed by adding constraints xwg1 < xwh1 
for all all weeks (w in 1..4). 1..4 and for all groups in each week (g< h in 1..3). 

Week symmetries:  

-  The previous constraints force, for all weeks (w in 1..4), the first element of the 
first group to be 1 (xw11 = 1). Then the second elements must be different. Week 
symmetries may be broken by imposing xw12 < xv12 for each pair of weeks w < k 
in 1..4. 

{x111< x112},{x121< x122},{x131< x132} 

{x111, x112},{ x121, x122},{x131, x132} 
< < 

{x111, x112},... 

{x211, x212},... 

<
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Symmetry Breaking before Search 

-  In this case it was possible to identify a number of symmetry breaking 
constraints to be posted before the search that can break most if not all the 
existing symmetries in the initial finite domain model. 

-  These constraints are in general easier to identify when the variables are all 
different, in which case, a total ordering of the variables may be imposed.  

-  Even when no such all-different constraints exists, non strict total ordering can 
nevertheless be imposed - the lexicographic ordering – to define a canonical 
solution, thus breaking variable symmetries. 

-  For example, let us assume that we have 3 variables, A, B and C that form a 
symmetry group, i.e. any permutation of them is still a solution of the problem. 

-  Intuitively, we may impose an ordering A ≤ B ≤ C to break the variable 
symmetries. Hence. If a solution is found with values  

-  3, 4, 5: then the canonical solution is A = 3, B = 4, C = 5  

-  3, 4, 4: then the canonical solution is A = 3, B = 4, C = 4.  
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Symmetry Breaking before Search 

-  In other cases, the symmetry breaking constraints are not so easily obtained. 
However, there is a technique that is always safe (if not always practical) to break 
variable symmetries of a symmetry group. This technique, lex-leader 

1.  assumes that the list of variables can be sorted in some (alphabetic) order, V.  

2.  For every symmetry s in the variable symmetry group S one lex-leader 
constraint is added:   

∀s in S : V ≤  s(V) 

-  In our example, we have V = ABC. The symmetries correspond to permutations 
of the variables and the lex-leader constraints are thus   
  ABC ≤ ABC  ABC ≤ BAC  ABC ≤ CAB 
  ABC ≤ ACB  ABC ≤ BCA   ABC ≤ CBA  

-  In the constraints above UV ≤ XY has the usual lexicographic meaning, i.e. 

α(U) < α(X)     ∨   ( α(U) = α(X) ∧ α(V) ≤ α(Y)) 

-  where α(X) denotes the value assigned to variable X. 
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Symmetry Breaking before Search 

-  From a practical view point, the lex-leader method may impose an exponential 
number of constraints. However, some simplifications are possible, as in the 
following examples. 

Example 1:  
The variables A, B, C are all different and may be permuted freely.   

  ABC ≤ ABC  ABC ≤ BAC  ABC ≤ CAB 
   ABC ≤ ACB   ABC ≤ BCA   ABC ≤ CBA  

i.  Now, ABC ≤ BAC can be simplified to A < B ( since A ≠B); and 

ii.  ABC ≤ ACB can be simplified to BC ≤ CB and then to B < C. 

-  By now we have the total order of the variables, A < B < C,  that is usually 
introduced in an ad hoc manner. Moreover, the other constraints are redundant. 
For example 

  ABC ≤ BCA  follows from A < B. 
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Symmetry Breaking before Search 

Example 2:  
The variables A, B, C are not all different and may be permuted freely.   

  ABC ≤ ABC  ABC ≤ BAC  ABC ≤ CAB 
  ABC ≤ ACB  ABC ≤ BCA  ABC ≤ CBA  

i.  ABC ≤ ACB can be simplified to  

B < C   ∨  (B = C  ∧  C ≤ B )  ⇔  B < C   ∨  B = C   ⇔  B ≤ C   

ii.  ABC ≤ BAC can be simplified to  

A < B   ∨  (A = B  ∧  B ≤ A )  ⇔  A < B   ∨  A = B    ⇔  A ≤ B 

-  Again, we were led to a non-strict total order of the variables, A ≤ B ≤ C,  that 
would be introduced ad hoc. Also, the other constraints are redundant. For 
example, ABC ≤ CAB can be simplified to (given the above constraints)  

 A < C   ∨  (A = C  ∧  B < A ) ∨  (A = C  ∧  B = A  ∧  C ≤ B)  
⇔  A < C  ∨ (A = C  ∧  B = A  ∧  B = C)           
⇔  A < C   ∨  (A = C  ∧  B  =  A) 

 which is redundant given A ≤ B and B ≤ C  

 

 

  



24 October 2016 Constraint Programming 25 

Symmetry Breaking before Search 

Example:  
 This is an example of a matrix model, where variables are organised as a 2*3 
matrix, for which the rows and the columns can be permuted freely (for example 
the latin squares have this kind of symmetries) 

-  In the figure, there were permutations of rows 1 and 2 and columns 2 and 3. 
 
 
 

  In this case there are 2! 3! = 12 symmetries (for the permutations of 2 rows and 
3columns) leading to 12 lex-leader constraints  

  1.  ABCDEF ≤ ABCDEF  7.  ABCDEF ≤ DEFABC 
  2.  ABCDEF ≤ ACBDFE  8.  ABCDEF ≤ DFEACB 
  3.  ABCDEF ≤ BACEDF  9.  ABCDEF ≤ EDFBAC 
  4.  ABCDEF ≤ CBAFED  10. ABCDEF ≤ FEDCBA 
  5.  ABCDEF ≤ BCAEFD  11. ABCDEF ≤ EFDBCA 
  6.  ABCDEF ≤ CABFDE  12. ABCDEF ≤ FDECAB 
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Symmetry Breaking before Search 

Example 3 (cont):  
 

 Some of these constraints can be simplified. For example, for constraint 2 

 ABCDEF ≤ ACBDFE  

⇔  BCEF ≤ CBEF  

⇔  B < C  ∨  (B=C  ∧ CEF ≤ BFE) 

⇔  B < C  ∨  (B=C  ∧ EF ≤ FE)  

⇔  B < C  ∨  (B=C  ∧ (E < F ∨  (E = F ∧ F ≤ E)) 

⇔  B < C  ∨  (B=C  ∧ (E < F ∨  E = F) 

⇔  B < C  ∨  (B=C  ∧ E ≤ F) 

⇔  BE ≤ CF 
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Symmetry Breaking before Search 

Example 3 (cont):  

  Similar reasoning can be applied to all the other constraints below,  
  1.  ABCDEF ≤ ABCDEF  7.  ABCDEF ≤ DEFABC 
  2.  ABCDEF ≤ ACBDFE  8.  ABCDEF ≤ DFEACB 
  3.  ABCDEF ≤ BACEDF  9.  ABCDEF ≤ EDFBAC 
  4.  ABCDEF ≤ CBAFED  10. ABCDEF ≤ FEDCBA 
  5.  ABCDEF ≤ BCAEFD  11. ABCDEF ≤ EFDBCA 
  6.  ABCDEF ≤ CABFDE  12. ABCDEF ≤ FDECAB 

resulting in the simplified lex-leader constraints. 
  1.  true  7.  ABC ≤ DEF 
  2.  BE  ≤  CF  8.  ABC ≤ DFE 
  3.  AD ≤ BE  9.  ABC ≤ EDF 
  4.  AD ≤ CF  10. ABC ≤ FED 
  5.  ABDE ≤ BCEF  11. ABCDE ≤ EFDBC 
  6.  ABDE ≤ CAFD  12. ABCDE ≤ FDECA 
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Symmetry Breaking before Search 

Example 3 (cont):  

  Seen as a set of constraints, they can be further simplified to,  
  1.  true  7.  ABC ≤ DEF 
  2.  BE  ≤  CF  8.  ABC ≤ DFE 
  3.  AD ≤ BE  9.  ABC ≤ EDF 
  4.  AD ≤ CF  10. ABC ≤ FED 
  5.  ABDE ≤ BCEF  11. ABCDE ≤ EFDBC 
  6.  ABDE ≤ CAFD  12. ABCDE ≤ FDECA 

resulting in the simplified lex-leader constraints. 
  1.  true  7.  ABC ≤ DEF 
  2.  BE  ≤  CF  8.  ABC ≤ DFE 
  3.  AD ≤ BE  9.  ABC ≤ EDF 
  4.  true  10. ABC ≤ FED 
  5.  true  11. ABCD ≤ EFDB 
  6.  true  12. ABC ≤ FDE 
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Symmetry Breaking before Search 

Lex-Leader and All-different 
 

 In case the variable symmetries occur in a set of variables that are all-different, a 
number of more interesting results have been proven. For example, given A = A 
and B ≠ C. the lex-leader constraints can be simplified , such as 

ABCDEF ≤ ACBDFE    à   B < C 

-  This is a general result that can be generalised as follows 

Lemma:  
 Given a CSP with n variables V that form a variable-symmetry group S, subject to 
an all-different constraint, than all variable symmetries can be broken by adding 
the following constraints 

   ∀s in S : v(i) <   v(s(i)) 

   where i is the first position where the lex-leader constraint has different variables,      
and s(i) the corresponding variable in the symmetry. 
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Symmetry Breaking before Search 

-  The previous resullt can be used only in a subset of the lex-leader constraints, 
which are found with a n algorithm (Scheier Sims) that is available in some 
Computational Group Theory tools. 

 
-  Moreover, it has been used  to prove the following 
 
Theorem:  

 Given a CSP with n variables V, subject to an all-different constraint than all 
variable symmetries can be broken by adding at most n-1 constraints. 

 
-  This theorem thus guarantees that the exponential number of lex-leader 

constraints that might be needed in the general case, can be reduced to n-1. 
 
-  This was the case with the simple permutation of n variables, xi,  (cf example 1) 

whose symmetries could be broken by the n-1 constraints 
x1 < x2  ,   x2 < x3   , ...,   xn-1 < xn 
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Symmetry Breaking before Search 

Lex-Leader and all-different 
 The 12 lex-leader constraints of example 3 can also be reduced as follows 

 
 
 

  2.  ABCDEF ≤ ACBDFE  à  B < C 
  3.  ABCDEF ≤ BACEDF   à  A < B 
  4.  ABCDEF ≤ CBAFED    à  A < C  from 2 and 3 
  5.  ABCDEF ≤ BCAEFD   à  A < B 
  6.  ABCDEF ≤ CABFDE   à  A < C   
  7.  ABCDEF ≤ DEFABC   à  A < D 
  8.  ABCDEF ≤ DFEACB   à  A < D 
  9.  ABCDEF ≤ EDFBAC   à  A < E   
  10. ABCDEF ≤ FEDCBA   à  A < F 
  11. ABCDEF ≤ EFDBCA   à   A < E 
  12. ABCDEF ≤ FDECAB  à   A < F 
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Symmetry Breaking before Search 

Lex-Leader and all-different 

  

 

In this case, the 12 symmetries are broken by only 5 constraints 
A < B , B < C, A < D , A < E , A < F 

 with an obvious interpretation: 
 

§  Variable A must be to the left of B (they are in the same row) 
§  Variable B must be “to the left” of C (they are in th same row) 
§  Variables D, E and F must be “above” variable A (they are in a different row 

of A)  
 

-  Notice that it is not imposed that D < E ( nor E < F) because they must be in the 
same columns that A and B (B and C) , and so must remain.  
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Symmetry Breaking before Search 

Lex-Leader when NOT all-different 

-  Since the set of lex-leader constraints might have an exponential number of 
elements, sub-sets of the lex-leader constraints have been tried by several 
authors. 

-  Of course, if not all lex-leader constraints are posted, it is not guaranteed that all 
variable symmetries are removed. 

-  However, the goal is to achieve a good trade-of between a reasonable number 
of broken symmetries and a polinomial number of lex-leader constraints (or their 
simplification).   

-  An obvious subset is composed, not by all variable symmetries in the variable 
symmetry group, but only a subset of its generators. (in a SAT problem, very 
good results were obtained by using only the 21 generators of a symetry group 
with 1016 elements). 



24 October 2016 Constraint Programming 34 

Symmetry Breaking before Search 

Matrix Models 

-  Another approach to symmetry breaking before search, similar but not the same 
as lex-leader, has been studied in special cases of variable symmetries, 
occurring in matrix models. 

-  These are problems where variables can be regarded as disposed in a matrix 
and all the constraints are preserved when columns and rows are swapped, as 
in the example seen before 

-  Many applications fit these matrix models, namely latin-squares problems in 2 
or a higher number of dimensions). Another example is the social golfers, that 
can be modelled in 3-dimensions by Boolean variables xwgp, which are true if in 
week w, player p plays in group g. 

-  In these models, symmetry breaking constraints can be obviously posted to 
impose a lexicographic order in the rows, or a lexicographic order in the 
columns. 
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Dynamic Symmetry Breaking 

Dynamic Symmetry Breaking (DSB) 

-  Rather than posting constraints before the search starts, as done in lex-leader 
and ad hoc methods that have been used in specific problems, DSB methods, 
analyse the search at every choice point and perform some extra operations to 
avoid the exploration of paths leading to symmetric solutions. Two main 
methods have been proposed  

SBDS – Symmetry Breaking During Search 

 Assuming that an assignment has been tested, all the symmetric assignments 
are excluded from the search by addition of symmetry breaking constraints.  

SBDD – Symmetry Breaking via Dominance Detection 

 At every node of the search tree, SBDD checks whether the node is symmetric 
of some other node already exploited, in which case it does not expand the 
node. 
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Dynamic Symmetry Breaking 

-  Before addressing these two DSB methods, we note that both methods assume 
that, during enumeration, search is made according to a binary search tree. 

-  In practice, if a variable with k values in its domain is selected, its enumeration 
is not done according to a k-ary tree (by expanding its k children), but rather by 
k binary expansions of its nodes, either on an assignment or its negation. 

X = ai X ≠ ai 

X 

a1 

a2 ak-1 

ak 

X 
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Dynamic Symmetry Breaking 

-  Binary expansions allow for a more flexible application of heuristics. Different 
variables may be picked in alternance. 

-  Example: X in {1, 6, 8, 9}  Y in {2, 3, 4, 7, 9} , X =< Y,  p(X,Y) 

 

X = 1 
X ≠ 1 
  Y ≠ 2 

    Y ≠ 3 
      Y ≠ 4 

 X in {6,8,9} 
Y in {7,9}   Y 

Y ≠ 7 
   Y = 9 
      

 

X 
X in {1,6,8,9} 
Y in {2,3,4,7,9}   

Y = 7 

X in {6,8,9} 
Y in {9}   
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SBDS by example 

-  In SBDS, the negations done in the right branches take into account not only 
the actual assignments made but also their symmetrical. 

Example: 4 queens  		       
        
        
        

-  Let us assume that the first assignment 
made is Q1 = 2 (left branch). 

-  This assignment is fully explored (it leads to 
the single solution shown) in the left hand 
branch.  

-  Then the right hand branch introduces 
constraint Q1 ≠ 2, aiming at some 
optimisation (by propagation) 

		       
    		   
    		   
  		     

Q1 

=2 ≠2 
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SBDS by example 

Example: 4 queens  

-  The added constraint Q1 ≠ 2 guarantees that 
already found solution(s) (with Q1 = 2) are 
not found again). 

-  But finding symmetrical solutions may also 
be avoided if symmetrical constraints are 
posted. 

-  For example, the vertical reflection of 
assignment Q1 = 2 is Q1 = 3, so this 
constraint can be added as well. 

-  In fact this eliminates finding the other 
solution, which can be obtained later by 
(vertical reflection) symmetry. 

		       
        
        
        

		       
        
        
        

Q1 

Q1 =2 
Q1 ≠2 
Q1 ≠3 
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SBDS by example 

Example: 4 queens  

-  The technique works with any symmetry. We 
could use vertical symmetry to exclude Q4 = 2. 

-  Again the other solution (with Q1 = 3 and Q4 = 2) 
would not be rediscovered. 

Inneficiency 1  

-  This would possibly be not as efficient as the 
elimination of the vertical reflection, as it would 
lead to 2 variables with 3 values in the domain 

Q1 in {1,3,4} 
Q4 in {1,3,4} 

  rather than 1 variable with only two values in the 
domain  

Q1 in {1,4} 

Q1 

Q1 =2 
Q1 ≠2 
Q4 ≠2 
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SBDS by example 

Example: 4 queens  

-  If the technique works with any symmetry, some 
will lead to useless prunning.  

-  For example, 90º rotation will exclude Q2 = 4. 

Inneficiency 2  

-  In this case, we would simply eliminate the 
rediscovery of the same solution already found 
with Q1 = 2, i.e. 

{Q1 = 2, Q2 = 4, Q3 = 2, Q4 = 3 } 

Q1 

Q1 =2 
Q1 ≠2 
Q2 ≠4 
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SBDS by example 

-  The situation is a bit more complex when the node where the symmetry 
breaking constraint is added is not the root node. 

X 

X = 2 X ≠ 2 
 
  Y 

Y = 4 ? 
 
  

-  Take the example shown. In this case, we cannot 
simply state Y ≠ 4 on the right branch of node Y, 
because it could lead to loss of solutions   

-  For example, a solution with X = 3 and Y = 4. 

-  All that is safe to is impose that Y = 4 is no longer 
acceptable in the context of X = 2, i.e.  

X = 2 à Y ≠ 4. 

-  Again, symmetrical conclusions should be inferred. 
Given a symmetry s, we could add on the right 
branch the constraint 

s(X = 2 à Y ≠ 4)  
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Symmetry Breaking During Search 

  8-queens 

 
   

		 		 		 		 		 		 		 		
		 		 		 		 		 		 		 		
		 		 		 		 		 		 		 		
		 		 		 		 		 		 		 		

		 		 		 		 		 		 		 		
		 		 		 		 		 		 		 		
		 		 		 		 		 		 		 		
		 		 		 		 		 		 		 		

Q1 ≠ 2   Id 
  Q2 ≠ 8   r90 
    Q8 ≠ 7   r180 
      Q7 ≠ 1   r270 
        Q1 ≠ 7   v 
          Q8 ≠ 2   h 
            Q7 ≠ 8   d1 
              Q2 ≠ 1   d2 

Q1 = 2 

Q1 = 2 →  Q2 ≠ 4   Id 
 Q2 = 8 →  Q4 ≠ 7   r90 
  Q8 = 7 →  Q7 ≠ 5   r180 
   Q7 = 1 →  Q5 ≠ 2   r270 
    Q1 = 7 →  Q2 ≠ 5   v 
     Q8 = 2 →  Q7 ≠ 4   h 
      Q7 = 8 →  Q5 ≠ 7   d1 
       Q2 = 1 →  Q4 ≠ 2   d1 

Q2 = 4 

Q3 = 6 

Q1=2 ∧ Q2=4 →  Q3≠6 
 Q2=8 ∧ Q4=7 →  Q6≠6 
  Q8=7 ∧ Q7=5 →  Q6≠3 
   Q7=1 ∧ Q5=2 →  Q3≠3 
    Q1=7 ∧ Q2=5 →  Q3≠3 
     Q8=2 ∧ Q7=4 →  Q6≠6 
      Q7=8 ∧ Q5=7 →  Q3≠6 
       Q2=1 ∧ Q4=2 →  Q6≠3 
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Symmetry Breaking During Search 

Some final comments on the SBDS method: 

1.  Contrary to adding constraints before search (e.g. lex-leader) SBDS does not 
require any change in the heuristics that are used. 

2.  Some CLP systems (e.g. Eclipse) allow some provisions to break symmetries – 
user must supply some specification of them, in some adequate language. 

3.  Once a symmetry has been broken in some node, one should not be worried 
with it in any successor of this node. Hence implementations may add a bit 
map to each node to store the broken symmetries. 

4.  Although problems with thousands of symmetries have been addressed with 
SBDS, nevertheless SBDS has major problems to deal with very large 
numbers of symmetries. Some experiences have been made with a selection 
of a subset that removes most symmetries, but only with relatively small 
number of symmetries. 
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Symmetry Breaking with Stabilisers - STAB 

-  Symmetry Breaking Using Stabilizers (STAB), like SBDS, adds symmetry 
breaking constraints during search. 

-  Unlike SBDS, which places constraints to break all the symmetry of the 
problem, STAB places symmetry breaking constraints only for symmetries that 
leave the partial assignment A at the current node unchanged. That is, instead 
of breaking symmetry in the whole group, STAB breaks symmetry in the 
stabiliser GA.  

-  This means that much less symmetries are required to break, since stabilisers 
are much less than the whole set of symmetries in a group. 

-  STAB constraints take the form of lexicographic ordering constraints at each 
node A. 

V ≤lex g(V)  for all g ∈ GA 

-  These constraints remove all the solutions that are not lexicographically 
minimum with respect to the stabiliser GA in the sub tree rooted at A. 
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STAB by example 

 Example: Consider a 4×5 matrix model as shown below, where each symmetry 
for A is defined by a row permutation and a column permutation, and a partial 
assignment also shown. 

-  The symmetry obtained by composing row symmetry (1,2), swapping rows 1 
and 2, and columns permutation (2,4,3,5), leaves the assigned variables 
unchanged. 

-  . 

x1 x2 x3 x4 x5 

x6 x7 x8 x9 x10 

x11 x12 x13 x14 x15 

x16 x17 x18 x19 x20 

0 0 0 1 1 

0 1 1 0 0 

x11 x12 x13 x14 x15 

x16 x17 x18 x19 x20 

x6 x9 x10 x8 x7 

x1 x4 x5 x3 x2 

x11 x14 x15 x13 x12 

x16 x19 x20 x18 x17 

0 0 0 1 1 

0 1 1 0 0 

x11 x14 x15 x13 x12 

x16 x19 x20 x18 x17 
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Symmetry Breaking with Stabilisers - STAB 

-  The lexical symmetry breaking constraint, allowing for the assignment A, is then 

[0, 0, 0, 1, 1, 0, 1, 1, 0, 0, x11, x12, x13, x14, x15, x16, x17, x18, x19, x20] 
≤lex 

 [0, 0, 0, 1, 1, 0, 1, 1, 0, 0, x11, x14, x15, x13, x12, x16, x19, x20, x18, x17] 
 
 
 
 
 

-  As the two vectors have the same first 10 elements, the constraint can be 
simplified into: 

[x11, x12, x13, x14, x15, x16, x17, x18, x19, x20] 
≤lex 

 [x11, x14, x15, x13, x12, x16, x19, x20, x18, x17]. 

-  Notice that unlike SBDS, this is an incomplete method, since it only breaks the 
symmetries described by the stabilisers. 

0 0 0 1 1 

0 1 1 0 0 

x11 x12 x13 x14 x15 

x16 x17 x18 x19 x20 

0 0 0 1 1 

0 1 1 0 0 

x11 x14 x15 x13 x12 

x16 x19 x20 x18 x17 
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SBDD by example 

-  We now focus our attention to another method for dynamic symmetry breaking: 
Symmetry Breaking via Dominance Detection (SBDD). 

-  Contrary to SBDS, SBDD does not add any constraints during search. Instead it 
checks whether a node ready to be expanded is dominated by a previously 
expanded node, in which case, the expansion is aborted. We can illustrate the 
method with a very simple example 

Example: Find different values for variables x1, x2, x3, with domains {1,2,3,4}.  

0: root 

1: x1 = 1 

6: x2 = 3 

2: x2 = 2 

3: x3 = 3 4: x3 ≠ 3 

5: x2 ≠ 2 

7: x3 = 2 8: x3 ≠ 2 

For this example, a 
search t ree can be 
represented as shown, 
each node n:δ where n is 
the ordering of visit and δ 
the decision made. 
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SBDD by example 

-  In the problem, there are several variable symmetries (6 in all). As such, the 
table shows that solutions in nodes 3 and 7 are symmetrical, corresponding to 
permute variables x2 and x3. 

-  These solutions would not be generated if we could detect that node 7 is 
dominated by node 2. In fact, assuming that node 2 is fully explored, all 
solutions with values 1 and 2 in the variables are found, and the solution in node 
7, that restricts x3 to value 3, is just a repetition (modulo symmetry) of some 
node previously found by expansion of node 2 (i.e. node 3). 

node x1 x2 x3 sol 

0 1 2 3 4 1 2 3 4 1 2 3 4   

1 1 2 3 4  2 3 4   

2 1 2 3 4    

3 1 2 3 y 

4 1 2 4 y 

5 1 3 4 2 3 4    

6 1 3 2 4   

7 1 3 2 y 

8 1 3 4 y 

0: root 

1: x1 = 1 

6: x2 = 3 

2: x2 = 2 

3: x3 = 3 4: x3 ≠ 3 

5: x2 ≠ 2 

7: x3 = 2 8: x3 ≠ 2 
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Symmetry Breaking via Dominance Detection 

-  To formalise SBDD the dominance property is tested between certain subsets 
of the tree nodes. These are captured by the notion of 

-  Definition: Nogood 

 In a search tree as described, a node n is a no-good wrt. node m iff n is the left 
hand child of some node ma, an ancestor of m, and n is not an ancestor of m. 

 0: root 

1: x1 = 1 

6: x2 = 3 

2: x2 = 2 

3: x3 = 3 4: x3 ≠ 3 

5: x2 ≠ 2 

7: x3 = 2 8: x3 ≠ 2 

In the figure: 

1.  Node 3 is a nogood 
wrt node 4. 

2.  Node 7 is a nogood 
wrt node 8 

3.  Node 2 is a nogood 
wrt nodes 5,6,7 and 8. 

-  Note: In the context of SBDD a nogood does not mean a failed node. Rather, it 
aims at defining dominant nodes, avoiding the expansion of dominated  nodes. 
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Symmetry Breaking via Dominance Detection 

-  Being based in the notion of dominance, SBDD requires a clear definition of this 
concept. The most obvious is based on state inclusion. 

-  Definition: Dominance (by state inclusion) 

 A node m is dominated if there is some node n, that is a nogood wrt m, and a 
symmetry s such that the domains of the variables in s(n) contain the domains 
of the variables in m. 

 

-  It is clear from this definition that for any solution obtained by expansion of node 
m, there will be a symmetrical solution obtained by expansion of node n, whose 
variable domains include (modulo symmetry) the domains of the variables in m. 

-  Nevertheless, an alternative definition allows a more efficient detection of 
dominance, based on sets of decisions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  


