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Constraint Programming 

-  An overview 

• Higher Consistency Types: Path and i-consistency 

• Consistency and Satisfiability 

• Other Consistencies:  Bounds- and SAC-Consistency   

• Non-Binary Networks and Generalised Arc-Consistency 
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Path-Consistency 

-  The following constraint network is obviously inconsistent: 

-  Nevertheless, it is arc-consistent: every binary constraint of difference (≠ ) is 
arc-consistent whenever the constraint variables have at least 2 elements in 
their domains. 

-  However, is is not path-consistent: NO label {<A-va>, <B-vb>} that is consistent 
(i.e. does not violate any constraint) can be extended to the third variable (C). 

{<A-1>, <B-2>}   → C ≠ 1, C ≠ 2       ;       {<A-1>, <B-2>} → C ≠1, C≠ 2  

-  This property is captured by the notion of path-consistency. 
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Path-Consistency 

Definition (Path Consistency): 

A constraint satisfaction problem is path-consistent if,  

•  It is arc-consistent; and 

•  Every consistent 2-compound label {Xi-vi, Xij-vj,} can be extended to a 
consistent label with a third variable Xk ( k ≠ i and k ≠j }. 

The second condition is more easily understood  as 

•  For every compound label {Xi-vi, Xij-vj,}  there must be a value vk that 
supports {Xi-vi, Xij-vj,}, i.e. the compound label {Xi-vi, Xj-vj, Xk-vk} satisfies 
constraints Cij, Cik, and Ckj. 
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Path-Consistency 

Example:  

-  By enforcing path consistency it is possible to avoid backtracking in the 4-
Queens problem.  

-  In fact, Q1-1 has only two supports in variable Q3,  namely Q2 and Q4. 

However: 

-  <Q1-1, Q3-2> cannot be extended to variable Q4 

-  <Q1-1, Q3-4> cannot be extended to variable Q2 

-  Hence, Q1 can be safely removed from the domain  of variable Q1. 

-  With similar reasoning, it may be shown that none of the corners, and none of 
the centre positions can have a queen.  
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Path-Consistency 

-  In general, and despite the previous example, maintaining path consistency does 
not prune the domain of a variable, but rather “forbids” compound labels with 
cardinality 2.  

-  This means that imposing arc-consistency on variables Xi and Xj through variable 
Xk, will tighten the (possible non-existing) constraint between Xi and Xj. 

-  In the example, a constraint of 
equality is imposed on variables B 
and  C, because the compound labels 
{ B-1 , C-2 } and { B-2 , C-1 } cannot 
be extended to variable A. 

= 
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Path-Consistency 

-  The constraints that are imposed by maintaining arc-consistency can be more 
easily understood if they are represented by means of boolean matrices (i.e. 
by extension). 

-  For example,  

-  Matrix MAB encodes a binary constraint of 
difference(≠) between variables A and B, 
each with the same two values in their domains 

-  Matrix M13 represents a no_attack constraint 
between queens in the 1st and 3rd rows, for the 
4-queens problem. 

MAB 1 2 

1 0 1 

2 1 0 

M13 1 2 3 4 

1 0 1 0 1 

2 1 0 1 0 

3 0 1 0 1 

4 1 0 1 0 
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Path-Consistency 

-  The imposition of path consistency,  on variables Xi and Xj  through variable Xk 
can be regarded as imposing a new constraint obtained by the boolean 
multplication of matrices Mik and Mjk. 

 
-  The restriction to the initial constraint no_attack between queens 1 and 3, is 

imposed by conjunction of the initial matrix M13 with matrix C13-4. 

 

M14 1 2 3 4 

1 0 1 1 0 

2 1 0 1 1 

3 1 1 0 1 

4 0 1 1 0 

M43 1 2 3 4 

1 0 0 1 1 

2 0 0 0 1 

3 1 0 0 0 

4 1 1 0 0 

C13-4 1 2 3 4 

1 1 0 0 1 

2 1 1 1 1 

3 1 1 1 1 

4 1 0 0 1 

M13 1 2 3 4 

1 0 1 0 1 

2 1 0 1 0 

3 0 1 0 1 

4 1 0 1 0 

  ×   
→ 

C13-4 1 2 3 4 

1 1 0 0 1 

2 1 1 1 1 

3 1 1 1 1 

4 1 0 0 1 

M13 1 2 3 4 

1 0 0 0 1 

2 1 0 1 0 

3 0 1 0 1 

4 1 0 0 0 

  
→ 

  
∧ 



3 October 2016 Constraint Programming 8 

Path-Consistency 

 
-  Indeed, the new matrix M’13 correctly 

registers the fact that 

 
 

-  Compound label {Q1-1, Q3-2} does not 
have support on Q4 and is removed from 
the initial constraint C13 

 

-  Compound label {Q1-4, Q3-2} does not 
have support on Q4 and is removed from 
the initial constraint C13 

 

M’13 1 2 3 4 

1 0 0 0 1 

2 1 0 1 1 

3 1 1 0 1 

4 1 0 0 0 

1 1 
1 1 
1 1 

1 1 
1 1 

1 1 
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Path-Consistency 

-  The successive application of this tightening of the initial constraints will 
eventually lead to the deletion of values from the domains of the variables, as 
can be illustrated by the 4-queens problem. 

 
-  First, constraint between variables Q1 and Q3 is tightened through variable 

Q2, as shown below.  

 

-  In this case, two compound labels {Q1-1, Q3-4} and {Q1-4, Q3-1} are removed 
from the initial constraint C13 (i.e. no_attack(Q1, Q3). 

1\2 1 2 3 4 2\3 1 2 3 4 1\3 1 2 3 4 1\3 1 2 3 4

1 0 0 1 1 1 0 0 1 1 1 0 1 0 1 1 0 1 0 0

2 0 0 0 1 2 0 0 0 1 2 1 0 1 0 2 1 0 0 0

3 1 0 0 0 3 1 0 0 0 3 0 1 0 1 3 0 0 0 1

4 1 1 0 0 4 1 1 0 0 4 1 0 1 0 4 0 0 1 0
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Path-Consistency 

-  Second, constraint C14 between variables Q1 and Q4 is tightened through 
variable Q3, as shown below.  

 
 
-  Notice  

a)  the use of the tightened constraint C13. 
b)  The rows 1 and 4 have no 1’s in the new constraint M’13.  

 
-  This last result means that values 1 and 4 from variable Q1 have no support on 

variable Q4 when the constraint C14 is tightened through variable Q3. 

-  Hence, values 1 and 4 can safely be removed from the domain of variable Q1 

 

1\3 1 2 3 4 3\4 1 2 3 4 1\4 1 2 3 4 1\4 1 2 3 4

1 0 1 0 0 1 0 0 1 1 1 0 1 1 0 1 0 0 0 0

2 1 0 0 0 2 0 0 0 1 2 1 0 1 1 2 0 0 1 1

3 0 0 0 1 3 1 0 0 0 3 1 1 0 1 3 1 1 0 0

4 0 0 1 0 4 1 1 0 0 4 0 1 1 0 4 0 0 0 0
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Path-Consistency 

-  The same applies when constraint M12, is tightened through variable Q4. 

-  But first, the rows corresponding to values 1 and 4 of variable Q1 are set to 
zero, since these values were removed from the value of the variable. 

-  The new “constraint” M14, leads to the removal of values 2 and 3 from the 
domain of Q2, since columns 2 and 3 only contain zeros. 

1\4 1 2 3 4 4\2 1 2 3 4 1\2 1 2 3 4 1\2 1 2 3 4

1 0 0 0 0 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0

2 0 0 1 1 2 1 0 1 0 2 0 0 0 1 2 0 0 0 1

3 1 1 0 0 3 0 1 0 1 3 1 0 0 0 3 1 0 0 0

4 0 0 0 0 4 1 0 1 0 4 1 1 0 0 4 0 0 0 0

1\4 1 2 3 4 1\4 1 2 3 4

1 0 1 1 0 1 0 0 0 0

2 0 0 1 1 2 0 0 1 1

3 1 1 0 0 3 1 1 0 0

4 0 1 1 0 4 0 0 0 0

→
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Path-Consistency 

-  The process is repeated with the tightening of constraint C13, through Q2. 

-  Since constraint C12 is used, in the corresponding matrix, rows 1 and 4, as well 
as columns 2 and 3 are zero-ed, given the removal of these values from the 
domain of the corresponding variables. The same applies to constraint C23, 
where rwos 2 and 3 are zero-ed. 

-  Columns 2 and 3 are also zero-ed in the new matrix, leading to the removal of 
2 and 3 from the domain of Q3. 

1\2 1 2 3 4 1\2 1 2 3 4

1 0 0 1 1 1 0 0 0 0

2 0 0 0 1 2 0 0 0 1

3 1 0 0 0 3 1 0 0 0

4 1 1 0 0 4 0 0 0 0

→

1\2 1 2 3 4 2\3 1 2 3 4 1\3 1 2 3 4 1\3 1 2 3 4

1 0 0 0 0 1 0 0 1 1 1 0 0 0 0 1 0 0 0 0

2 0 0 0 1 2 0 0 0 0 2 1 0 0 0 2 1 0 0 0

3 1 0 0 0 3 0 0 0 0 3 0 0 1 1 3 0 0 0 1

4 0 0 0 0 4 1 1 0 0 4 0 0 0 0 4 0 0 0 0
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Binary Constraints: i-consistency 

 
 

-  The notions of node-, arc- and path-consistency can be generalised for a 
common criterion: i-consistency, with increasing demands of consistency. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

0 0 ≠ 

0,1 0,1 
≠ 

0,1 
≠ ≠ 

0..2 0..2 
≠ 

0..2 

≠ ≠ 

0..2 

≠ 
≠ 

≠ 

-  A node consistent network, that is not arc 
consistent 

-  An arc consistent network, that is not path 
consistent 

-  A path-consistent network, that is not 4-
consistent 
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Binary Constraints: i-consistency 

 
 
-  The  criterion of i-consistency is thus defined as follows. 

•  A network is i-consistent if all compound labels of cardinality i-1 can be 
extended to any other i-th variable. 

1.  For example, with k = i-1, any compound label <xa1-va1, xa2-va2, ..., xak-vak>, 
that satisfies the constraints over variables of set S =  {xa1, xa2, ..., xak} 
can be extended to another variable xai, i.e. there is a vai in the domain of xai 
that satisfies all the constraints defined on the set S ∪ {xai}  of variables. 

2.  As a special case, when i=1, only the unary constraints must be satisfied. 

-  Additionally, a network is strongly i-consistent if it is k-consistent for all k ≤ i. 

-  Given this definitions it is easy to show that the following equivalences: 

 Node-consistency   ↔  strong 1-consistency 

 Arc- consistency  ↔  strong 2-consistency 

 Path-consistency  ↔  strong 3-consistency 
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Binary Constraints: i-consistency 

-  Notice that the analogies of node-, arc- and path- consistency were made with 
respect to strong i-consistency. 

-  This is because a constraint network may be i-consistency but not m-
consistent (for some m < i). For example, the network below is  3-consistent, 
but not  2-consistent. Hence it is not strongly 3-consistent. 

 
 
 
 
 
 
 
 

0 0 

0,1 
≠ ≠ 

B 

C A 
-  The only 2-compound labels, that satisfy the 

constraints 

{A-0,B-1},  {A-0,C-0}, and {B-1, C-0} 

 may be extended to the remaining variable 

{A-0,B-1,C-0} 

-  However, the 1-compound label {B-0} cannot be 
extended to variables A or C {A-0,B-0} !  
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Binary Constraints: i-consistency 

 
 -  For i > 3, i-consistency cannot be implemented with binary constraints alone, In fact: 

-  2-consistency checks whether a 1-label {xi-vi} can be extended to some other  
2-label {xi-vi, xj-vj}. If that is not the case, label {xi-vi} is removed from the 
domain of Xi. 

-  3-consistency checks whether a 2-label {xi-vi, xj-vj} can be extended to a 3-label 
{xi-vi, xj-vj, xk-vk} . If that is not the case, label {xi-vi, xj-vj} is removed. 

-  Removing label {xi-vi, xj-vj} is not achieved by removing values from the 
domains of the variables, but rather by tightening a constraint Cij on variables xi 
and xj. 

-  By analogy, to impose 4-consistency 3-labels have to be removed so a constraint 
on 3 variables has to be created or tightened. 

-  In general, maintaining i-consistency requires imposing constraints with arity i-1. 
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Binary Constraints: i-consistency 

 
 -  The algorithms that were presented for achieving arc-consistency could be 

adapted to obtain i-consistency,  provided that we consider constraints with i-1 
arity. 

-  The adaptation of the AC-1 algorithm (brute-force) would have  

-  Time complexity of O(2i (nd)2i). 

-  Space complexity of O(nidi). 

-  The adaptation of the AC-4 and AC-6 algorithms lead to optimal asymptotic time 
complexity of  Ω (nidi)  ( a lower bound). 

 

-  Given the mentioned complexity (even if the typical cases are not so bad) their 
use in backtrack search is generally not considered.  

-  The main application of these criteria is in cases where tractability can be 
proved  based on these criteria. 
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Network Consistency and Satisfiability 

 
 All types of i-consistency can be imposed by polynomial algorithms, with 
asymptotic time complexity  Ω(nidi) even when the corresponding problems 
(modelled with binary constraints) are NP-complete. 

Hence, in general for a network with n variables, i-consistency (for any i < n) i-does 
not imply satisfiability of the problem, i.e.  

There are unsatisfiable problems modelled with binary constraints whose 
corresponding network is i-consistent. 

Of course, the converse is also true 

There are satisfiable problems modelled with binary constraints whose 
corresponding network is not i-consistent. 

Nevertheless, in some special cases, the two concepts (i-consistency and  
satisfiability are equivalent). 

We will overview three such cases. 
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Network Consistency and Satisfiability 

 
 Case 1: A network of binary constraints, whose variables have only 2 values in their 
domain, is satisfiable iff it can be made path-consistent. 

Proof: By recasting the problem to 2-SAT. 

If the network is path-consistent, then  

1.  all binary constraints are explicit, and 

2.  the matrices representing the constraints have a maximum of 2 rows and 2 
columns. 

In this case, the satisfaction of a constraint can be equated to the satisfaction of a 
Boolean formula in disjunctive normal form (see figure below for an example). 

 

   (a2 ∧ b3)  ∨ (a2 ∧ b4) ∨ (a5 ∧ b4) 

 

 

    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

a\b	 3	 4	

2	 1	 1	

5	 0	 1	
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Network Consistency and Satisfiability 

 
 But given that there are only two values in each domain we may made explicit that 
one of the values correspond to the negation of the other, as shown below 

    a2 = a  

    a5 = ¬a    

    b3 = b 

    b4 = ¬b 

  

 R = (a ∧ b)  ∨ (a ∧ ¬b) ∨ (¬a ∧ ¬b) 

 

Now, since path-consistency makes explicit all implicit relations between variables, 
the corresponding  path-consistent network will contain a 0-matrix if and only if the 
corresponding problem is unsatisfiable. 

 

    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

a\b	 3	 4	

2	 1	 1	

5	 0	 1	
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Graph Width 

-  Before presenting another theorem relating k-consistency and tractability it is  
convenient to consider constraint networks with n-ary constraints (n>2), either 
because a problem is specified with such constraints, or because these 
constraints are induced in a (binary) graph when k-consistency (k>3) is 
imposed on the constraint network. 

-  For this purpose we have the following definition: 

Definition: Primal Graph of a Constraint Network 

The primal graph of a constraint network is a graph where there is an edge 
between two variables iff there is some constraint with the two variables in its 
scope. 

 

Given the definition, the primal graph of a constraint satisfaction problem 
coincides with the problem graph if the only constraints to be considered are 
binary (or unary). 
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Graph Width 

Example:  

1.  Let us assume that the in i t ia l 
formalisation of a problem leads to the 
network P1. 

2.  Imposing path-consistency, arcs are 
added between variables, e.g. 2-3, 
resulting in network P2 (still a graph). 

3.  Imposing 4-consistency, hyper-arcs are 
imposed on variables 1-2-3, 1-2-5 and 
1-3-6, resulting in network P3 (a hyper-
graph). 

4.  The primal graph of the problem is 
shown as graph P4. 

2 3 

5 6 

1 

7 

4 P1 

2 3 

5 6 

1 

7 

4 P4 

2 3 

5 6 

1 

7 

4 P3 

2 3 

5 6 

1 

7 

4 P2 



3 October 2016 Constraint Programming 23 

Graph Width 

 

Definition: Node width, given ordering O  

 Given some total ordering, O, defined on the nodes of a graph, the width 
of a node N, given ordering O is the number of lower order nodes that are 
adjacent to N. 

Example: For the graph and the ordering O1 shown we have 
§  w(1,O1) = 0    
§  w(2,O1) = 1 (node 1) 
§  w(3, O1) = 2 (nodes 1 and 2) 
§  w(4, O1) = 3 (nodes 1, 2 and 3) 
§  w(5, O1) = 3 (nodes 1, 2 and 4) 
§  w(6, O1) = 3 (nodes 1, 3 and 4) 
§  w(7, O1) = 3 (nodes 4, 5 and 6) 

  

2 3 

5 6 

1 

7 

4 
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Graph Width 

-  Different orderings will produce different widths for the nodes of the graphs. 

Example: For the same graph but with an “inverted ordering O2, we have 

 
§  w(1, O2) = 0    
§  w(2, O2) = 1 (node 1) 
§  w(3, O2) = 1 (node 1) 
§  w(4, O2) = 3 (nodes 1, 2 and 3) 
§  w(5, O2) = 2 (nodes 2 and 4) 
§  w(6, O2) = 2 (nodes 3 and 4) 
§  w(7, O2) = 5 (nodes 2, 3, 4, 5 and 6) 

  

6 5 

3 2 

7 

1 

4 



3 October 2016 Constraint Programming 25 

Graph Width 

-  From the width of the nodes one may obtain the width of a graph. 

Definition: Graph width, given ordering O  

 Given some total ordering, O, defined on the nodes of a graph, the width 
of the graph, given ordering O is the maximum width of its nodes, given 
ordering O.  

Example: For the two orderings we obtain  

                

  
2 3 

5 6 

1 

7 

4 
6 5 

3 2 

7 

1 

4 

W(G,O1) = 3 W(G,O2) = 5 
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Graph Width 

-  Now we may define the width of a graph, independent of the ordering used. 

Definition: Graph width 

The width of a graph is the lowest width of the graph over all possible total 
orderings. 

 In the example, it is easy to see that the width of the graph is 3. 

2 3 

5 6 

1 

7 

4 

a)  Ordering O1 assigns width 3 to the graph. Hence 
the graph width is not greater than 3. 

b)  A width of 2 on a graph with 7 nodes would 
require the graph to have at most 0+1+5*2 = 11 
edges. Hence, the width of the graph, which has 
15 edges, cannot be less than 3. 

c)  From a) and b) the width of graph G is 3. 
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Tractability  and i-Consistency 

-  Now we can present a theorem relating k-consistency and the width of a 
graph, which indirectly checks whether a problem is tractable. 

Theorem: Graph width and Satisfiability 

 Let a constraint satisfaction problem be modelled by a constraint network, 
that after imposing k-consistency leads to a primal graph of width k-1. 
Under these conditions, any ordering that assigns width k to the primal 
graph is a backtrack free ordering (BTF). 

Example: For the networks below assumed to be path-consistent (3-consistent) 
O1 and O2 are BTF orderings, but O3 is not. 

 1 

2 

4 

3 

5 

6 

8 

7 

7 

8 
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1 

2 

1 

5 
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4 

3 

6 

7 

8 

27 
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Tractability  and i-Consistency 

-  In fact, for ordering O3  

1.  every label {x1-v1, x2-v2}, has a support in x3, 
say {x3-v3}. 

2.  But, label {x1-v1, x3-v3}, has a support in x4, 
say {x4-v4}. 

3.  Now, label {x3-v3, x4-v4}, has a support in x5, 
say {x5-v5}. 

4.  Then, label {x3-v3, x5-v5}, has a support in x6, 
say {x6-v6}. 

5.  And, label {x5-v5, x6-v6}, has a support in x7, 
say {x7-v7}. 

6.  Finally, label {x5-v5, x7-v7}, has a support in x8, 
say {x8-v8}. 

28 

1 

2 

4 

3 

5 

6 

8 

7 

•  All things considered, label {x1-v1, x2-v2, x3-v3, x4-v4, x5-v5, x6-v6, x7-v7,x8-v8} is a 
solution of the problem, and was found with no backtracking 
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Tractability  and i-Consistency 

-  However, for ordering O3  

§  every label {x1-v1, x2-v2}, has a support in x4, 
say {x4-u4}. 

§  every label {x2-v2, x3-v3}, has a support in x4, 
say {x4-v4}. 

1 

5 

2 

4 

3 

6 

7 

8 

-  But there is no guarantee that v4 and u4 are the same! 

-  In fact, there might be no value in the domain of x4 that supports both the 
assignments {x1-v1, x2-v2}, and {x2-v2, x3-v3}. 

-  If this is the case, after assigning values {x1-v1, x2-v2, x3-v3}, no value exists for x4 
that is compatible with these and one of them must be backtracked!}. 

-  In this example, the same would happen with variable x8 (connected to “prior” 
variables x3, x6 and x7). 

29 



Graph Width 

-  To take advantage of the relation between i-consistency and induced graph 
width, it is still necessary to find the width of a graph or, equivalently, one optimal 
ordering, i.e. one that induces a minimal width. 

-  Fortunately there is a greedy algorithm (thus polynomial) that finds all optimal 
orderings. The idea is very simple. Always select (nondeterministically) a node 
with the least number of adjacent nodes (less degree). Put it in the back of the 
ordering,  delete all the arcs leading to the node, and proceed recursively. 

function min-width(G: set of Nodes, A: set of Arcs): 
  Sequence of Nodes; 

   if G.nodes = {n} then   
      L  ← [n] 
   else 
      n <- argn min {degree(n,G,A)}  
      G1.arcs ← G.arcs \ {A: A = (_,n)  ∨ A = (n,_) 
      G1.nodes ← G.nodes\{N} 
      L ← min-width(G1) + [ n ] 
   end if 
   min-width ← L  
 end function 
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Network Consistency and Satisfiability 

 
 •  So, in addition to 

Case 1: A network of binary constraints, whose variables have only 2 values in 
their domain, is satisfiable iff it can be made path-consistent. 

 we have 

Case 2: A network of constraints (of any arity), whose primal graph has width k is 
satisfiable iff it is k+1-consistent. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

1 

2 

4 5 

3 

6 7 

•  For example: 

2-consistency (i.e. arc-consistency) of the 
constraint network guarantees the 
satisfaction of the associated constraint 
problem, if all constraints are binary and 
the constraint graph has the topology of a 
tree. 

A BTF ordering proceeds from the root to 
the leaves 
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Network Consistency and Satisfiability 

 
 The previous 2 cases can be regarded as special cases of CSP tractable problems 
whose language or structure are restricted wrt to general binary CSPs. 

Case 1 (Constraint Language Restriction): A network of binary constraints, 
whose variables have only 2 values in their domain, is satisfiable iff it can be made 
path-consistent. 

Case 2 (Structural Restriction): A network of constraints (of any arity), whose 
primal graph has width k is satisfiable iff it is k+1-consistent. 

For the third case we present next, the Broken-Triangle Property (BTP) is a 
polynomial-time detectable property which defines a novel hybrid tractable class of 
binary CSP instances.  

The BTP can be viewed as forbidding the occurrence of certain sub-problems of a 
fixed size within a CSP instance.  

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 



Definition: A binary CSP instance satisfies the broken-triangle property (BTP) with 
respect to the variable ordering <, if, for all triples of variables i, j, k such that i < j < k, 
if (u,v)∈Rij, (u,a)∈Rik and (v,b)∈Rjk, then either (u,b)∈Rik or (v,a) ∈ Rjk.  
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Network Consistency and Satisfiability 

a 

b 
u 

v 

i 

j 

k 
c = ( a or b) 

u 

v 

i 

j 

k 

=> 



Now to check the tractability of this class of problems we have the following * 

Theorem 3.2. Given a binary CSP instance I, there is a polynomial-time algorithm 
to find a variable ordering <, such that I satisfies the broken-triangle property with 
respect to < (or to determine that no such ordering exists).  

For the CSP instances that have the BTP with respect to some ordering there is 
thus a polynomial-time procedure to determine a variable ordering which 
guarantees backtrack-free search. Moreover, 

Theorem 3.1. For any binary CSP instance which satisfies the BTP with respect to 
some known variable ordering <, it is possible to find a solution in O(d2e) time (or 
determine that no solution exists).  

Hence a problem that presents the BTP property is tractable. Not only is tractable 
finding the order of variables, but also finding a solution is tractable in these cases. 

* See details in Martin C. Cooper, Peter G. Jeavons, András Z. Salamon, Generalizing constraint satisfaction 
on trees: Hybrid tractability and variable elimination, AI Journal, 174 (2010), pp. 570–584 
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Network Consistency and Satisfiability 
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Directed Arc-consistency 

 
  Some constraints may take advantage of some special features to improve the 
efficiency of their (arc-consistency) propagators.  

Take for example the case of a CSP with a tree-structure.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1 

2 

4 5 

3 

6 7 

Although arc-consistency requires support in 
both directions of the edges of the graph, 
support is only needed “upwards” given the 
order in which variables are labelled 
(“downwards”). 

Hence, in these networks there is only the 
need to maintain directed-arc consistency! 

 

Of course, this case can be generalised for networks of width k for which all that is 
required is to maintain directed k-consistency  to guarantee satisfiability.  
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Singleton Arc-consistency 

 
  As mentioned, path-consistency is usually too heavy. Nevertheless, there is a 

variation of arc-consistency that is sometimes able to prune values from variables that 
standard arc-consistency cannot. An example can illustrate this effect. 

If at some point in the search, some variable x is 
chosen to be labelled, one may try to label it with 
all its possible values, and apply arc-consistency 
with no commitment (sometimes known as 
“shaving”). 

If some value v of some other unlabelled variable 
y is removed in all cases, than  this value can 
safely be removed form the domain of y, below 
the choice-point where variable x is labelled. 

x = a 

y != v 

x = b 

y != v 

x 
v ∈ Dy 

x 
v ∉ Dy 
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Arc-consistency: special purpose propagators 

 
  Some constraints may take advantage of some special features to improve the 
efficiency of their propagators.  

Take for example the propagator for the n-queens problem: no_attack(i, qi, j, qj). 

The usual arc-consistency would propagate the constraint (i.e. prune each of the 
values in the domain of q1/q2 with no supporting value in q2/q1), whenever the 
constraint is taken from the queue (assuming an AC-3 type algorithm).  

However, it is easy to see that a queen with 4 values in the domain offers at least one 
support value to any other queen. 

In fact a queen qi can only be attacked by 3 queens from another row j. Hence the 4th 
queen in row j will not attack it. 

Hence, the propagator for no_attack should first check the cardinality of the domains, 
and only check for supports when one of the queens have a domain with cardinality of 
3 or less! 
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Non-Binary Constraints: Bounds-consistency 

 
 
In numerical constraints (equality and inequality constraints) it is very usual not to 
impose a too demanding arc-consistency, but rather to impose mere bounds 
consistency. 

Take for example the simple constraint a < b over variables a and b with domains 
0..1000. 

In such inequality constraints, the only values worth considering for removal are 
related to the bounds of the domains of these variables. 

In particular, the above constraint can be compiled into 

   max(a) < max(b)   and       min(b) < min(a) 

In practice this means that the values that can be safely removed are 

  all values of a above the maximum value of b; 

  all values of b below the minimum value of a; 

These values can be easily removed from the domains of the variables. 
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Non-Binary Constraints: Bounds-consistency 

 
 
It is interesting to note how this kind of consistency detects contradictions. 

Take the example of a < b and b > a, two clearly unsatisfiable constraints. If the 
domains of a and b are the range 1..1000, it will take about 500 iterations to detect 
contradiction 

 a:: 1 .. 1000, b:: 1 .. 1000  a < b  →   a:: 1 .. 999, b:: 2 .. 1000 

 a:: 1 .. 999,   b:: 2 .. 1000  a > b  →   a:: 3 .. 999, b:: 2 .. 998 

 a:: 3 .. 999,   b:: 2 .. 998  a < b →   a:: 3 .. 997, b:: 4 .. 998 

 a:: 3 .. 997,   b:: 4 .. 998  a > b →   a:: 5 .. 997, b:: 4 .. 996 

   .... 

 a:: 499..501, b:: 498..500  a < b →   a::499..499, b::500..500 

 a:: 500..500, b:: 500..500  a > b →   a::501..500, b::500..499 

Now, the lower bound is greater than the upper bound of the variables domains, 
which indicates constradiction! 
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Non-Binary Constraints: Bounds-consistency 

 
 
This reasoning can be extended to more complex numerical constraints involving 
numerical expressions:. 

Example: a + b ≤ c  

The usual compilation of this constraint is  

 max(a) ≤ max(c) – min(b)  to prune high values of a 

 max(b) ≤ max(c) – min(a)  to prune high values of b 

 min(c) ≥ min(a) + min(b)  to prune high values of a 

Many numerical relations envolving more than two variables can be compiled this 
way, so that the corresponding propagators achieve bounds consistency. 

This is particularly useful when the domains are encoded not as lists of elements 
but as pairs min .. max as is usually the case for numerical variables. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



3 October 2016 Constraint Programming 41 

Enforcing generalised arc-consistency: GAC-3 

 
 
 
 

-  All algorithms for achieving arc-consistency can be adapted to achieve 
generalised arc-consistency (or domain-consistency) by using a modified 
version of the revise_dom predicate, that for every k-ary constraint checks 
support values from  each variable in the remaining k-1 variables. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

predicate revise_gac(V,D, c ∈ C): boolean; 
   R <- ∅; 
   for xi in vars(c) 
      for vi in dom(Xi) do 
   Y  = vars(c) \ {xi} ; 
      if  ¬ ∃ V in dom(Y): satisfies({xi-vi, Y-V}, c) then 
         dom(Xi) <- dom(xi) \ {vi}; 
         R <- R ∪ {i}; 
      end if 
   end for 
   revise_gac <- R; 
end predicate 
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Enforcing generalised arc-consistency: GAC-3 

 
 
 
 

-  The GAC-3 algorithm is presented below, as an adaptation of AC-3. 

-  Any time a value is removed from a variable Xi, all constraints that have this 
variable in the scope are placed back in the queue for assessing their local 
consistency. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

procedure AC-3(V, D, C); 
   NC-1(V,D,C);  % node consistency 
   Q = { c | c ∈ C}; 
   while Q ≠ ∅ do 
      Q = Q \ {c}   % removes an element from Q  
      for i in revise_gac(V,D, c ∈ C) do   % revised xi 
         Q = Q ∪ {r | r ∈ C ∧  i ∈ vars(r) ∧ r ≠ c } 
      end if 
   end while 
end procedure 
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Complexity of GAC-3 

 
Time Complexity of GAC-3: O(a k2 dk+1) 
 

-  Every time that an hyper-arc/n-ary constraint is removed from the queue Q, 
predicate revise_gac is called, to check at most k*dk tuples of values. 

-  In the worst case, each of the a constraints is placed into the queue at most 
k*d times. 

-  All things considered, the worst case time complexity of GAC-3, is O(kdk*a*kd) 

O(a k2 dk+1) 

-  Of course, when all the constraint are binary the complexity of GAC-3 is the 
same of AC-3, i.e. 

O(a d3) 
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Constraint Propagation 

Generalised arc-consistency provides a scheme for an architecture of constraint 
solvers, even when constraints are not binary. 

For every constraint (binary or n-ary) a number of propagators are considered. In 
general, each  propagator: 

-  affects one variable (aiming at narrowing its domain, when invoked); 

-  is triggered by some events, namely some change in the domain of some 
variable; 

For example, the posting of the constraint  c :: x + y = z creates 3 propagators 

Px: x ß y – z          ;     Py: y ß z – x     ;       Pz: z ß x + y 

Propagator Px (likewise for propagators Py and Pz) is triggered by some change in 
the domain of variables y or z. 

When executed it (possibly) narrows the domain of x. If this becomes empty, a 
failure is detected and backtracks is enforced. 
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Constraint Propagation 

The life cycle of such propagators can be schematically represented as follows: 
1.  Propagators are created when the corresponding constraint is posted.  They 

are enqueued  and  become ready for execution.  
2.  When they reach the front of the queue they are executed. Upon execution the 

domain of the propagator variable is possibly narrowed.  
3.  If the domain is empty, backtracking occurs, and after trailing, the propagator 

is put back in the queue.   
4.  Otherwise, the propagator stays waiting for a triggering event.  
5.  When one such event occurs the propagator is enqueued .  While enqueued, 

other triggering events are possibly “merged” in the queue. 

 

 

Wait 

4. success 

3. backtrack 
Execute 

2. dequeue 1. post 

Queue 
5. triggered 
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Constraint Propagation 

Px: x ß y – z          ;     Py: y ß z – x     ;       Pz: z ß x + y 

Propagators aim at maintaining some form of consistency, typically domain 
consistency or bounds consistency,  This has a direct influence on the events that 
trigger them. 

For example, with bounds consistency, propagator Px is triggered when the 
maximum or minimum values in the domain of variables y and z is changed. 
These are the only events that change the maximum and minimum values of the 
domain of variable x. 

In contrast, if domain consistency is maintained, propagator Px is triggered 
whenever any value is removed from the domain of any of the variables y or z, 
since these removals may end the support of some value in the domain of x. 

This also means that sometimes the activation of the propagator does not lead to 
the removal of any value in the domain. For example value 3 in x may be 
supported by either values 5 and 2, or by values 7 and 4 for variables y and z. If 7 
is removed from the domain of y,  x= 3 still has support in y and z.  
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Generalised arc-consistency: Global Constraints 

The time complexity of generalised arc consistency for n-ary constraints may be too 
costly. Consider the case of k variables that all have to take different values. 

x1 ≠ x2, x1 ≠ x3 ... x1 ≠ xk ... xk-1 ≠ xk 

These k(k-1)/2 binary constraints can be replaced by a single  k-ary constraint  

all_diffferent(x1 , x2, x3 , .. , xk) 

However, checking the consistency of such constraint by the naïve method 
presented, would have complexity O(a k2 dk+1) , i.e. O( k4 dk+1). 

This is why, some very widely used n-ary constraints are dealt with as global 
constraints, for which special purpose, and much faster, algorithms exist to check 
the constraint consistency. 

In the all_different constraint, an algorithm based in graph theory enforces this 
checking with complexity O(d k3/2), much better than the naïve version. 

For example for d  ≈ k ≈ 9 (sudoku problem!) the number of checks is reduced from 
92*910 ≈ 3*1010 to a much more acceptable number of 9* 93/2 ≈ 243.  


