
19 September 2016 Constraint Programming

Constraint Programming

-  An overview

• Examples of decision (making) problems

• Complexity and need for search

• Declarative Modelling with Constraints

•  Constraint Programming

•  Finite and Continuous Domains

1

19 September 2016 Constraint Programming

Constraint Problems: Examples

-  Decision Making Problems include:

§  Modelling of Digital Circuits

§  Production Planning

§  Network Management

§  Scheduling

§  Assignment (Colouring, Latin/ Magic Squares, Sudoku, Circuits, ...)

§  Assignment and Scheduling (Timetabling, Job-shop)

§  Filling and Containment

-  Typically a problem may be represented by different models, some of which
may be more adequate (ease of modeling, efficiency of solving in a given
solver, etc)

2

19 September 2016 Constraint Programming

Modeling of Digital Circuits

Goal (Example): Determine a test pattern that detects some faulty gate

-  Variables:
§  Signals in the circuit

-  Domain:
§  Booleans: 0/1 (or True/False, or High/Low)

-  Constraints:
§  Equality constraints between the output of a gate and its “boolean

operation” (e.g. and, or, not, nand, ...)

A

C

D

B

E

F

G

H

I

G1

G2

G3

G4

G5

E = or(A,B) % G1
F = nand(B,C) % G2
G = and(B,C) % G3
H = nand(E,F) % G4
I = nand(F,G) % G5

3

19 September 2016 Constraint Programming

Production Planning

Goal (Example): Determine a production plan

-  Variables:
§  Quantities of goods to produce

-  Domain:
§  Rational/Reals or Integers

-  Constraints:
§  Equality and Inequality (linear) constraints to model resource limitations,

minimal quantities to produce, costs not to exceed, balance conditions,
etc...

Find x, y and z such that
 4x+ 3y + 6z ≤ 1500 % resources used do not exceed 1500
 x + y + z >= 300 % production not less than 300 units
 x ≤ z + 20 % x units within z ± 20 units
 x ≥ z - 20
 x, y, z ≥ 0 % non negative production

4

19 September 2016 Constraint Programming

Network Management

Goal (Example): Determine acceptable traffic on a netwok

-  Variables:
§  Flows in each edge

-  Domain:
§  Rational/Reals (or Integers)

-  Constraints:
§  Equality and Inequality (linear) constraints to model capacity limitations,

flow maintenance, costs, etc...

Find x,y,z, a,b,c,d,e such that
 x ≥ 6, z ≥ 10 % minimum flow
 a ≤ 5, ... , f ≤ 6 % capacity
% flow maintenance
 x = a, y = b + c, a + b + d = e,
 c = d + f, e + f = z
 x, y ,z, a, b, c, d, e, f ≥ 0

5/a

2/d
8/e

6/f

3/b

7/c

x

y

z

5

19 September 2016 Constraint Programming

Schedulling

Goal (Example): Assign timing/precedence to tasks

-  Variables:
§  Start Timing of Tasks, Duration of Tasks

-  Domain:
§  Rational/Reals or Integers

-  Constraints:
§  Precedence Constraints, Non-overlapping constraints, Deadlines, etc...

Find Sa ,..., Se, such that
 Sb ≥ Sa+Ta, % precedence

 (Sc ≥ Sb+Tb) ∨ (Sb ≥ Sc+Tc) % non overlap
 ...,
 6 ≥ Sa+Ta % deadline
 Sa,..., Se ≥0

Sa

Sc

Sb

Se

Sd Ta

Ta

Tb

Tc

Td

6

19 September 2016 Constraint Programming

Assignment

Many constraint problems can be classified as assignment problems. In general
all that can be stated is that these problems follow a general CSP goal :

 Assign values to the variables to satisfy the relevant constraints.

–  Variables:

§  Objects / Properties of objects

–  Domain:

§  Finite Discrete /Integer or Infinite Continuous /Real or Rational Values

§  colours, numbers, duration, load

§  Booleans for decisions

–  Constraints:

§  Compatibility (Equality, Difference, No-attack, Arithmetic Relations)

Some examples may help to illustrate this class of problems

7

19 September 2016 Constraint Programming

Assignment (2)

A
B

C
D

E

F

Graph Colouring (0/1 or Booleans – but not SAT)

Assign values to A1,A2, .., F1,F2
 s.t. Ar, Ab, Ag, .., Fr, Fb, Fg ∈ {0,1}
% one and only one colour for A, B, ..., F

 Ar + Ab + Ag = 1;

% different colours for A and B, ...
Ar + Br <= 1; Ab + Bb <= 1; Ag + Bg <= 1;

A
B

C
D

E

F

Graph Colouring (Finite Domains)

Assign values to A, .., F,

 s.t. A, B, .., F ∈ {red, blue, green}
 A ≠ B, A ≠ C, A ≠ D,
 B ≠ C, B ≠ F, C ≠ D, C ≠ E, C ≠ F
 D ≠ E, E ≠ F

8

19 September 2016 Constraint Programming

Assignment (3)

Q1

Q2

Q3

Q4

N-queens (Finite Domains):

Assign Values to Q1,..., Qn ∈ {1,.., n}

s.t. ∀i≠j noattack (Qi, Qj)

Latin Squares (similar to Sudoku):

Assign Values to X11,..., X33 ∈ {1,.., 3}

s.t. ∀k ∀i ∀j≠i Xki ≠ Xkj % same row

 ∀k ∀i ∀j≠i Xik ≠ Xjk % same column

X11 X12 X13
X21 X22 X23
X31 X32 X33

Magic Squares:
Assign Values to X11,..., X33 ∈ {1,..,9}
s.t. ∀i ∀j≠i Σk Xki = Σk Xkj = M % same rows sum
 ∀i ∀j≠i Σk Xik = Σk Xjk = M % same cols sum
 Σk Xkk = Σk Xk,n-k+1 = M % diagonals
 ∀i≠k ∨ ∀j≠l Xij ≠ Xkl % all different

X11 X12 X13
X21 X22 X23
X31 X32 X33

9

19 September 2016 Constraint Programming

Assignment (3)

Travelling Salesperson (Finite Domains)
Find values for A, B, C, D ∈ {1,..,4}
 s.t. A ≠ B, ..., C ≠ D
 % a permutation of [A,B,C,D]
 if A = B+1 then XA = Lba,
 ...
 if D = C+1 then XD = Lcd
 XA + XB + XC + XD ≤ k

A B

C D

23

18

33

17 13 21

Travelling Salesperson (0/1 or Booleans – but not SAT)

Find decision values for Xab...Xdc ∈ {0,1}

 s.t. ∀a Σk Xak = 1

 ∀a Σk Xka = 1

 ... no subcycle constraints

	ΣaΣb Xab Lab < k

A B

C D

23

18

33

17 13 21

10

19 September 2016 Constraint Programming

Mixed: Assignment and Scheduling

Goal (Example): Assign values to variables

-  Variables:
§  Start Times, Durations, Resources used

-  Domain:
§  Integers (typicaly) or Rationals/Reals

-  Constraints:
§  Compatibility (Disjunctive, Difference, Arithmetic Relations)

Job-Shop
Assign values to Sij ∈ {1,..,n} % time slots

 and to Mij ∈ {1,..,m} % machines available
% precedence within job

 ∀j ∀i < k Sij + Dij ≤ Skj
 % either no-overlap or different machines

 ∀i,j,k,l (Mij ≠ Mkl) ∨ (Sij + Dij ≤ Skl) ∨ (Skl + Dkl ≤ Sij)

J1

J2

J3

J4

1 2 3

1 2 3

1 2 3

1 2 3

11

19 September 2016 Constraint Programming

Filling and Containment

Goal (Example): Assign values to variables

-  Variables:
§  Point Locations

-  Domain:
§  Integers (typicaly) or Rationals/Reals

-  Constraints:
§  Non-overlapping (Disjunctive, Inequality)

Fiiling
Assign values to Xi ∈ {1,.., Xmax} % X-dimension

 Yi ∈ {1,.., Ymax} % Y-dimension
% no-overlapping rectangles
 ∀i,j (Xi+Lxi ≤ Xj) % I to the left of J

 (Xj+Lxj ≤ Xi) % I to the right of J
 (Yi+Lyi ≤ Yj) % I in front of J
 (Yj+Lxj ≤ Xi) % I in back of J

D

G

I

BC
A

J
H

E

F
K

12

19 September 2016 Constraint Programming

Constraint Satisfaction Problems

-  Other Examples (from CP-16):

-  Finding Patterns for DataMining

-  Rather than finding rules (as in ID3 /CS4.5) whole sets must be obtained

-  e.g. sequences of letters in AND / Protein searches

-  Hospital Residence Problem (with pairs)

-  Kind of Stable Marriage Problem but pairings make it NP-Hard

-  Both Hospitals and Residents (junior doctors) have a list of preferences
-  Pairs of Residents have joint preferences

13

19 September 2016 Constraint Programming

Constraint Satisfaction Problems

-  Formally a constraint satisfaction problem (CSP) can be regarded as a tuple
<X, D, C>, where

-  X = { X1, ... , Xn} is a set of variables

-  D = { D1, ... , Dn} is a set of domains (for the corresponding variables)

-  C = { C1, ... , Cm} is a set of constraints (on the variables)

-  Solving a constraint problem consists of determining values xi ∈ Di for each
variable Xi, satisfying all the constraints C.

-  Intuitively, a constraint Ci is a limitation on the values of its variables.

-  More formally, a constraint Ci (with arity k) over variables Xi1, ..., Xik ranging
over domains Di1, ..., Dik is a subset of the cartesian cartesian Dj1× ... × Djk.

Ci ⊆ Dj1× ... × Djk

14

19 September 2016 Constraint Programming

Constraints and Optimisation Problems

-  In many cases, one is interested not only in satisfying some set of constraints
but also in finding among all solutions those that optimise a certain objective
function (minimising a cost or maximising some positive feature).

-  Formally a constraint (satisfaction and) optimisation problem (CSOP or COP)
can be regarded as a tuple <V, D, C, F>, where

-  X = { X1, ... , Xn} is a set of variables

-  D = { D1, ... , Dn} is a set of domains (for the corresponding variables)

-  C = { C1, ... , Cm} is a set of constraints (on the variables)

-  F is a function on the variables

-  Solving a constraint satisfaction and optimisation problem consists of
determining values xi ∈ Di for each variable Xi, satisfying all the constraints C
and that optimise the objective function.

15

19 September 2016 Constraint Programming

Decision Problems are NP-complete

-  All the problems presented are decision problems in that a decision has to be
made regarding the value to assign to each variable.

-  Non-trivial decision making problems are untractable, i.e. they lie in the class of
NP problems.

-  Formally, these are the problems that can be solved in polinomial time by a non-
deterministic machine, i.e. one that “guesses the right answer”.

-  For example, in the graph colouring problem (n nodes, k colours), if one has to
assign colours to n nodes, a non-deterministic machine could guess a solution in
O(n) steps.

-  As a class, NP-complete problems may be converted in polinomial time onto
other NP-complete problems (SAT, in particular).

NP Problem SAT

16

19 September 2016 Constraint Programming

Decision Problems are NP-complete

-  No one has already found a polynomial algorithm to solve SAT (or any other NP
problem), and hence the conjecture P ≠ NP (perhaps one of the most challenging
open problems in computer science) is regarded as true.

-  Hence, with real machines and non trivial problems, one has to guess the adequate
values for the variables and make mistakes. In the worst case, one has to test O(kn)
potential solutions.

-  Just to have an idea of the complexity, the table below shows the time needed to
check kn solutions, assuming one solution is examined in 1 µsec (times in secs).

 1 hour = 3.6 * 103 sec 1 year = 3.2 * 107 sec TOUniv = 4.7 * 1017 sec

10 20 30 40 50 60

2 1.0E-03 1.0E+00 1.1E+03 1.1E+06 1.1E+09 1.2E+12

3 5.9E-02 3.5E+03 2.1E+08 1.2E+13 7.2E+17 4.2E+22

4 1.0E+00 1.1E+06 1.2E+12 1.2E+18 1.3E+24 1.3E+30

5 9.8E+00 9.5E+07 9.3E+14 9.1E+21 8.9E+28 8.7E+35

6 6.0E+01 3.7E+09 2.2E+17 1.3E+25 8.1E+32 4.9E+40

n

k

nk

17

kn

19 September 2016 Constraint Programming

Decision Problems are NP-complete

-  Still, constraint solving problems are NP-complete problems (as SAT is).

-  If a non-deterministic machine (that guesses correctly) can solve a problem in
polynomial time, then a real deterministic machine can check in polinomial time
whether a potential solution satisfies all the constraints.

-  More important: with an appropriate search strategy, many instances of NP-
complete problems can be solved in quite acceptable times.

-  Hence, search plays a fundamental role in solving this kind of problems.
Adequate search methods and appropriate heuristics can often solve large
instances of these problems in very acceptable time.

18

19 September 2016 Constraint Programming

Search Strategies

-  There are two main types of search strategies that have been adopted to solve
combinatorial problems:

Complete Backtrack Search Methods:

-  Solutions are incrementally completed, by assigning values to “undecided”
variables and backtrack whenever any constraint is violated;

-  These methods are complete: if a solution exists it is found in finite time.

-  More importantly, they can proof non-satisfiability.

Incomplete Local Search Methods:

-  Complete “solutions” are incrementally repaired, by changing the values
assigned to some of the variables until a “real solution” is found;

-  These local search methods are not guaranteed to avoid revisiting the same
solutions time and again and are therefore incomplete.

-  They are often very efficient to find very good solutions (local optima)

19

19 September 2016 Constraint Programming

Optimisation Problems are NP-hard

-  Optimisation problems are typically NP-hard problems in that solving them is at
least as difficult as solving the corresponding decision problem.

-  In practice these problems cannot be solved in polynomial time by a non-
deterministic machine, not can they be checked by a deterministic machine.

-  In fact, to find an optimal solution it is not enough to find it ... It is necessary to
show that it is better than all other solutions!

-  Being harder than the decision problems, optimisation problems also require
adequate search strategies, if larger instances are to be solved.

-  In complete search, detection of failure and subsequent backtracking may
be imposed if the partial solution can be proved to be no better than one
already found (branch & bound).

20

19 September 2016 Constraint Programming

Constraint Programming

Constraint Programming (and Languages) is driven by a number of goals

-  Expressivity

-  Constraint Languages should be able to easily specify the variables,
domains and constraints (e.g. conditional, global, etc...);

-  Declarative Nature

-  Ideally, programs should specify the constraints to be solved, not the
algorithms used to solve them

-  Efficiency

-  Solutions should be found as efficiently as possile, i.e. with the
minimum possible use of resources (time and space).

These goals are partially conficting goals and have led to the various
developments in this research and development area.

21

19 September 2016 Constraint Programming

Declarative Programming

-  Programming a combinatorial problem thus requires

§  the specification of the constraints of the problem

§  The specification of a search algorithm

-  The separation of these two aspects has for a long time been advocated by
several programming paradigms, namely functional programming and logic
programming.

-  Logic programming in particular has a built-in mechanism for search
(backtracking) that makes it easy to extend into constraint (logic) constraint
programming, by “replacing” its underlying resolution to constraint
propagation. A number of Constraint Logic Programming languages have
been proposed (CHIP, ECLiPSE, GNU Prolog, SICStus) to explore this
extension of logic programming.

-  More recently, other declarative languages such as Comet (OO-like), Choco
(Java Library) and Zinc, provide more convenient data structures for
modelling, maintaining a declarative approach.

22

19 September 2016 Constraint Programming 23

Constraint Programming

Constraint Programming (and Languages) is driven by a number of goals

-  Expressivity

-  Constraint Languages should be able to easily specify the variables,
domains and constraints (e.g. conditional, global, etc...);

-  Declarative Nature

-  Ideally, programs should specify the constraints to be solved, not the
algorithms used to solve them

-  Efficiency

-  Solutions should be found as efficiently as possible, i.e. with the
minimum possible use of resources (time and space).

These goals are partially conflicting goals and have led to the various
developments in this research and development area.

19 September 2016 Constraint Programming 24

Search Methods – Pure Backtracking

-  The same specification can lead to different search strategies when sequentially
assigning values to variables.

-  The simplest backtracking strategy sees constraints in a passive form:

§  Whenever a variable is assigned a variable, the constraints whose variables
are assigned variables are checked for satisfaction

§  If this is not the case, the search backtracks (chronological backtrack).

-  This is a typical generate and test procedure

§  Firstly, values are generated

§  Secondly, the constraints are tested for satisfaction.

-  Of course, tests should be done as soon as possible, i.e. a constraint is
checked whenever all its variables are assigned values.

-  This procedure is illustrated in the 8-queens problem.

25

Backtracking

Tests 0 Backtracks 0
19 September 2016 Constraint Programming

26

Backtracking

Tests 0 +1 = 1 Backtracks 0

Q1 \= Q2, L1+Q1 \= L2+Q2, L1+Q2 \= L2+Q1.

19 September 2016 Constraint Programming

27

Backtracking

Q1 \= Q2, L1+Q1 \= L2+Q2, L1+Q2 \= L2+Q1.

Tests 1 +1 = 2 Backtracks 0

19 September 2016 Constraint Programming

28

Backtracking

Q1 \= Q2, L1+Q1 \= L2+Q2, L1+Q2 \= L2+Q1.

Tests 2 +1 = 3 Backtracks 0
19 September 2016 Constraint Programming

29

Backtracking

Tests 3 +1 = 4 Backtracks 0
19 September 2016 Constraint Programming

30

Backtracking

Tests 4 +2 = 6 Backtracks 0
19 September 2016 Constraint Programming

31

Backtracking

Tests 6 + 1 = 7 Backtracks 0
19 September 2016 Constraint Programming

32

Backtracking

Tests 7 + 2 = 9 Backtracks 0
19 September 2016 Constraint Programming

33

Backtracking

Tests 9 + 2 = 11 Backtracks 0
19 September 2016 Constraint Programming

34

Backtracking

Tests 11 + 1 + 3 = 15 Backtracks 0
19 September 2016 Constraint Programming

35

Backtracking

Tests 15+1+4+2+4 = 26 Backtracks 0
19 September 2016 Constraint Programming

36

Backtracking

Tests 26+1 = 27 Backtracks 0
19 September 2016 Constraint Programming

37

Backtracking

Tests 27 + 3 = 30 Backtracks 0
19 September 2016 Constraint Programming

38

Backtracking

Tests 30+2 = 32 Backtracks 0
19 September 2016 Constraint Programming

39

Backtracking

Tests 32 + 4 = 36 Backtracks 0
19 September 2016 Constraint Programming

40

Backtracking

Tests 36 + 3 = 39 Backtracks 0
19 September 2016 Constraint Programming

41

Backtracking

Tests 39 + 1 = 40 Backtracks 0
19 September 2016 Constraint Programming

42

Backtracking

Tests 40 + 2 = 42 Backtracks 0
19 September 2016 Constraint Programming

43

Backtracking

Tests 42 + 3 = 45 Backtracks 0
19 September 2016 Constraint Programming

44

Backtracking

Tests 45 Backtracks 0+ 1 = 1

Q6 Fails

Backtracks
to

Q5

19 September 2016 Constraint Programming

45

Backtracking

Tests 45 Backtrackings 1
19 September 2016 Constraint Programming

46

Backtracking

Tests 45 + 1 = 46 Backtracks 1
19 September 2016 Constraint Programming

47

Backtracking

Tests 46 + 2 = 48 Backtracks 1
19 September 2016 Constraint Programming

48

Backtracking

Tests 48 + 3 = 51 Backtracks 1
19 September 2016 Constraint Programming

49

Backtracking

Tests 51 + 4 = 55 Backtracks 1
19 September 2016 Constraint Programming

50

Backtracking

Tests 55+1+3+2+4+3+1+2+3 = 74 Backtracks 1+2 = 3

Q6 Fails

Backtracks
to

Q5

and next to

Q4

19 September 2016 Constraint Programming

51

Backtracking

Tests 74+2+1+2+3+3= 85 Backtracks 3
19 September 2016 Constraint Programming

52

Backtracking

Tests 85 + 1 + 4 = 90 Backtracks 3
19 September 2016 Constraint Programming

53

Backtracking

Tests 90 +1+3+2+5 = 101 Backtracks 3
19 September 2016 Constraint Programming

54

Backtracking

Tests 101+1+5+2+4+3+6= 122 Backtracks 3
19 September 2016 Constraint Programming

55

Backtracking

Tests 122+1+5+2+6+3+6+4+1= 150 Backtracks 3+1=4

Q8 Fails

Backtracks
to

Q7

19 September 2016 Constraint Programming

56

Backtracking

Tests 150+1+2= 153 Backtracks 4+1=5

Q7 Fails

Backtracks
to

Q6

19 September 2016 Constraint Programming

57

Backtracking

Tests 153+3+1+2+3= 162 Backtracks 5+1=6

Q6 Fails

Backtracks
to

Q5

19 September 2016 Constraint Programming

58

Backtracking

Tests 162+2+4= 168 Backtracks 6
19 September 2016 Constraint Programming

59

Backtracking

Tests 168+1+3+2+5+3+1+2+3= 188 Backtracks 6+1 = 7

Q6 Fails

Backtracks
to

Q5

19 September 2016 Constraint Programming

60

Backtracking

Tests 188+1+2+3+4= 198 Backtracks 7+1=8

Q5 Fails

Backtracks
to

Q4

19 September 2016 Constraint Programming

61

Backtracking

Tests 198 + 3 = 201 Backtracks 8
19 September 2016 Constraint Programming

62

Backtracking

Tests 201+1+4 = 206 Backtracks 8
19 September 2016 Constraint Programming

63

Backtracking

Tests 206+1+3+2+5 = 217 Backtracks 8
19 September 2016 Constraint Programming

64

Backtracking

Tests 217+1+5+2+5+3+6 = 239 Backtracks 8
19 September 2016 Constraint Programming

65

Backtracking

Tests 239+1+5+2+4+3+6+7+7= 274 Backtracks 8+1 = 9

Q8 Fails

Backtracks
to

Q7

19 September 2016 Constraint Programming

66

Backtracking

Tests 274+1+2= 277 Backtracks 9+1=10

Q7 Fails

Backtracks
to

Q6

19 September 2016 Constraint Programming

67

Backtracking

Tests 277+3+1+2+3= 286 Backtracks 10+1=11

Q6 Fails

Backtracks
to

Q5

19 September 2016 Constraint Programming

68

Backtracking

Tests 286+2+4= 292 Backtracks 11
19 September 2016 Constraint Programming

69

Backtracking

Tests 292+1+3+2+5+3+1+2+3= 312 Backtracks 11+1=12

Q6 Fails

Backtracks
to

Q5

19 September 2016 Constraint Programming

70

Backtracking

Tests 312+1+2+3+4= 322 Backtracks 12+2=14

Q5 Fails

Backtracks
to

Q4

and next to

Q3

19 September 2016 Constraint Programming

71

Backtracking

Tests 322 + 2 = 324 Backtracks 14

Q1 = 1

Q2 = 3

Q3 = 5

Impossible !

19 September 2016 Constraint Programming

19 September 2016 Constraint Programming 72

Search Methods (2) – Backtracking + Propagation

-  A more efficient backtracking search strategy sees constraints as active
constructs:

§  Whenever a variable is assigned a variable, the consequences of such
assignment are taken into account to narrow the possible values of the
variables not yet assigned.

§  If for one such variable there are no values to chose from, then a failure
occurs and the search backtracks.

-  This is a typical test and generate procedure

§  Firstly, values are tested to check their possible use.

§  Secondly, the values are assigned to the variables.

-  Clearly, the reasoning that is done should have the adequate complexity
otherwise the gains obtained from the narrowing of the search space are offset
by the costs of such narrowing.

-  This procedure is illustrated again with the 8-queens problem.

73

Search Methods (2) – Backtracking + Propagation

Tests 0 Backtracks 0
19 September 2016 Constraint Programming

74

Search Methods (2) – Backtracking + Propagation

1 1

1

1

1

1

1 1

1

1

1

1

1

1
Tests 8 * 7 = 56 Backtracks 0

Q1 #\= Q2, L1+Q1 #\= L2+Q2, L1+Q2 #\= L2+Q1.

19 September 2016 Constraint Programming

75

Search Methods (2) – Backtracking + Propagation

1 1

1

1

1

1

1 1

1

1

1

1

1

1 2

2

2

2

2

2

2

2

2

2

2

Tests 56 + 6 * 6 = 92 Backtracks 0
19 September 2016 Constraint Programming

76

Search Methods (2) – Backtracking + Propagation

1 1

1

1

1

1

1 1

1

1

1

1

1

1 2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3 3

Tests 92 + 21 = 113 Backtracks 0
19 September 2016 Constraint Programming

19 September 2016 Constraint Programming 77

Search Methods(2a) – B+P w/Heuristics

-  In both types of backtrack search (pure backtracking as well as in backtracking +
propagation) there is a need for heuristics.

-  After all, in decision problems with n variables, a perfect heuristics would find a
solution (if there is one) in exactly n steps (i.e. with n decisions – polinomial time).

-  Of course, there are no such perfect heuristics for non-trivial problems (this would
imply P = NP, a quite unlikely situation), but good heuristics can nonetheless
significantly decrease the search space. Typically a heuristics consists of

§  Variable selection: The selection of the next variable to assign a value

§  Value selection: Which value to assign to the variable

-  The adoption of a backtrack + propagation search method allows better heuristics
to be used, that are not available in pure backtrack search methods.

-  In particular a very simple heuristics, first-fail, is often very useful: whenever a
variable is restricted to take a single value, select that variable and value.

-  This procedure is again illustrated with the 8-queens problem.

78

Search Methods(2a) – B+P w/Heuristics

1 1

1

1

1

1

1 1

1

1

1

1

1

1 2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3 3

Tests 92 + 21 = 113 Backtracks 0

Which
queen to

label?

19 September 2016 Constraint Programming

79

Search Methods(2a) – B+P w/Heuristics

1 1

1

1

1

1

1 1

1

1

1

1

1

1 2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3 3

Tests 92 + 21 = 113 Backtracks 0

Q6

may only
take value

 4

19 September 2016 Constraint Programming

80

Search Methods(2a) – B+P w/Heuristics

1 1

1

1

1

1

1 1

1

1

1

1

1

1 2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3 3

6

6

6

6

6 6
Tests 113+3+3+3+4 = 126 Backtracks 0

19 September 2016 Constraint Programming

81

Search Methods(2a) – B+P w/Heuristics

1 1

1

1

1

1

1 1

1

1

1

1

1

1 2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3 3

6

6

2

6

6 6
Tests 126 Backtracks 0

Q8

may only
take value

 7

19 September 2016 Constraint Programming

82

Search Methods(2a) – B+P w/Heuristics

1 1

1

1

1

1

1 1

1

1

1

1

1

1 2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3 3

6

6

2

6

6 6
Tests 126 Backtracks 0

19 September 2016 Constraint Programming

83

Search Methods(2a) – B+P w/Heuristics

1 1

1

1

1

1

1 1

1

1

1

1

1

1 2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3 3

6

6

2

6

6 6

8

8

Tests 126+2+2+2=132 Backtracks 0
19 September 2016 Constraint Programming

84

Search Methods(2a) – B+P w/Heuristics

1 1

1

1

1

1

1 1

1

1

1

1

1

1 2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3 3

6

6

2

6

6 6

8

8

Tests 132 Backtracks 0

Q4

may only
take value

 8

19 September 2016 Constraint Programming

85

Search Methods(2a) – B+P w/Heuristics

1 1

1

1

1

1

1 1

1

1

1

1

1

1 2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3 3

6

6

2

6

6 6

8

8

Tests 132 Backtracks 0
19 September 2016 Constraint Programming

86

Search Methods(2a) – B+P w/Heuristics

1 1

1

1

1

1

1 1

1

1

1

1

1

1 2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3 3

6

6

2

6

6 6

8

8

4

Tests 132+2+1=135 Backtracks 0
19 September 2016 Constraint Programming

87

Search Methods(2a) – B+P w/Heuristics

1 1

1

1

1

1

1 1

1

1

1

1

1

1 2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3 3

6

6

2

6

6 6

8

8

4

Tests 135 Backtracks 0

Q5

may only
take value

 2

19 September 2016 Constraint Programming

88

Search Methods(2a) – B+P w/Heuristics

1 1

1

1

1

1

1 1

1

1

1

1

1

1 2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3 3

6

6

2

6

6 6

8

8

4

Tests 135 Backtracks 0
19 September 2016 Constraint Programming

89

Search Methods(2a) – B+P w/Heuristics

1 1

1

1

1

1

1 1

1

1

1

1

1

1 2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3 3

6

6

2

6

6 6

8

8

4

5

Tests 135+1=136 Backtracks 0
19 September 2016 Constraint Programming

90

Search Methods(2a) – B+P w/Heuristics

1 1

1

1

1

1

1 1

1

1

1

1

1

1 2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3 3

6

6

2

6

6 6

8

8

4

5

Tests 136 Backtracks 0
19 September 2016 Constraint Programming

91

Search Methods(2a) – B+P w/Heuristics

1 1

1

1

1

1

1 1

1

1

1

1

1

1 2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3 3

6

6

2

6

6 6

8

8

4

5

Tests 136 Backtracks 0+1=1

Q7

may take NO
value

 Failure!

Backtracks

... to Q3 !

19 September 2016 Constraint Programming

92

Search Methods(2a) – B+P w/Heuristics

1 1

1

1

1

1

1 1

1

1

1

1

1

1 2

2

2

2

2

2

2

2

2

2

2

3

3 3

3

3

3

3

3

Tests 136 Backtracks 1

3

Tests
136

(324)

Backtracks
1

(14)

Q1 = 1

Q2 = 3

Q3 = 5

Impossible !

19 September 2016 Constraint Programming

19 September 2016 Constraint Programming 93

Search Methods – B+P w/Heuristics

-  The adoption of constraint propagation and backtrack is more efficient for three
main reasons:

§  Early detection of Failure:

•  In this case, after placing queens Q1 = 1, Q2 = 3 and Q3 = 5, a failure is
detected without any backtracking.

§  Relevant backtracking:

•  Although a failure is detected in Q7, backtracking is done to Q3, and to
none of the other queens (Q4, Q5, Q6 and Q8, that are not relevant).

•  With pure backtracking many backtracks were done to undo choices in
these queens.

§  Heuristics:

•  Constraint Propagation makes it easy to adopt heuristics based on the
remaining values of the unassigned variables.

19 September 2016 Constraint Programming

Constraint Programming by Example

An example: SEND+MORE = MONEY

-  Find the digits encoded by letters, where different letters stand for different
digits, and the symbolic sum below stands (the leftmost digits are not zero):

 S E N D
+ M O R E
M O N E Y

-  Similarly to all combinatorial problems, a declarative approach (as taken by
Constraint Logic Programming) solves this problem by separating the two
components:

§  Model: What are the variables that will be chosen for the problem
unknowns, and the constraints that must be satisfied

§  Search: What strategies are used to assign values to variables

94

19 September 2016 Constraint Programming

Constraint Programming by Example

Modelling

-  There are two main steps in modelling a problem:

1.  Choose variables to represent the unknowns

•  What are the variables

•  What values can they take

2.  Select the constraints that these variables must satisfy according to the
conditions of the problem;

•  How to constrain the variables

•  Are there alternative (more efficient?) sets of constraints?

-  These decisions are often interdependent as illustrated in this problem.

 S E N D
+ M O R E
M O N E Y

95

19 September 2016 Constraint Programming

Constraint Programming by Example

Model 1 :

-  Variables Adopted:

§  One variable for each letter (we use the letter as the name of the variable)

§  Each variable takes values in 0 to 9

-  Constraints to be Satisfied:

§  All variables must be different;

§  The sum must be correct

§  No leading zeros

 S E N D
+ M O R E
M O N E Y

96

19 September 2016 Constraint Programming

Constraint Programming by Example

Model 1 : In Comet, this model is specified as follows

% // import cotfd;
enum Letters = {s,e,n,d,m,o,r,y};
range Rng = 0 .. 9;
Solver<CP> cp();
var<CP>{int} q[Letters](cp,Rng);
solve<cp>{
 cp.post(q[s] != 0); % No leading zeros
 cp.post(q[m] != 0);
 cp.post(alldifferent(q)); % All variables are different
 % The sum must be correct
 cp.post(1000*q[s]+100*q[e]+10*q[n]+q[d]
 + 1000*q[m]+100*q[o]+10*q[r]+q[e]
 == 10000*q[m]+1000*q[o]+100*q[n]+10*q[e]+q[y]);
} using
 labelFF(q);

C4 C3 C2 C1
 S E N D
 + M O R E
 M O N E Y

97

19 September 2016 Constraint Programming

Constraint Programming by Example

Model 2 :

-  There is an alternative modelling, that represents the total sum as it is usually
operated with “carries”

§  One variable for each letter (we use the letter as the name of the variable)

•  Each variable takes values in 0 to 9

§  4 Carries

•  Each carry takes value 0 or 1

-  Constraints to be Satisfied:

§  All variables must be different;

§  All the sums (digit by digit, including carries) must be correct

§  No leading zeros

C4 C3 C2 C1
 S E N D
 + M O R E
 M O N E Y

98

19 September 2016 Constraint Programming

Constraint Programming by Example

Model 2 : This alternative model can also be expressed in Comet

enum Letters = {s,e,n,d,m,o,r,y};
range Rng = 0 .. 9;
Solver<CP> cp();
 var<CP>{int} q[Letters](cp,Rng);
 var<CP>{int} c[1..4](cp,0..1);
solve<cp>{
 cp.post(q[s] != 0); % No leading zeros
 cp.post(q[m] != 0);
 cp.post(alldifferent(q)); % All variables are different
 % The sum must be correct
 cp.post(q[d] + q[e] == q[y] +10 * c[1]);
 cp.post(q[n] + q[r] + c[1] == q[e] +10 * c[2]);
 cp.post(q[e] + q[o] + c[2] == q[n] +10 * c[3]);
 cp.post(q[s] + q[m] + c[3] == q[o] +10 * c[4]);
 cp.post(c[4] == q[m]);
} using { labelFF(q); labelFF (c)}

C4 C3 C2 C1
 S E N D
 + M O R E
 M O N E Y

99

19 September 2016 Constraint Programming

Constraint Programming by Example

Model 3 :

-  Even the constraints might often be expressed in alternative ways. The
constraint that all letters are different can be expressed by the primitive global
constraint alldifferent(q), or obtained by conjunction of the individual pairwise
different (!=) constraints:

-  As will be seen later, when available, global constraints typically lead to much
more efficient execution.

// cp.post(alldifferent(q));

forall(i in letters, j in letters: i!=j)

 cp.post(q[i] != q[j]);

100

19 September 2016 Constraint Programming

Constraint Programming by Example

Enumeration :

-  Once the variables are declared and the constraints posted, the constraint
solver should find values for the variables in some efficient way.

-  This is because the underlying constraint propagation process does not
guarantee that the problem has a solution!

-  It simply removes values from the domain of variables that guaranteedly do not
belong to any solution.

-  The enumeration is typically achieved in Comet with function label/1, that
assigns values to the input variables and backtracks when this is impossible.

-  The labelling process may be more or less efficient, depending on the
heuristics used. A fairly good heuristic is the fail-first that assigns values to the
variables with less values in their domains. In Comet, that may be expressed
by function labelFF/1.

-  More sophisticated heuristics may nevertheless be programmed by the user.

101

19 September 2016 Constraint Programming

Constraint Programming – Finite Domains

-  The efficiency obtained in solving a problem with CP depends on many issues that will
be addressed in the course:

1.  Formalization of Constraint Propagation

2.  Types of constraints and their main features

3.  Alternative models

a.  Redundant Constraints

b.  Symmetry Breaking Constraints

4.  Heuristics that are most commonly used

5.  Testing these techniques with Comet in several non-trivial examples

102

19 September 2016 Constraint Programming

Constraint Programming – Continuous Domains

Continuous constraints require somewhat different methods for constraint propagation
as well as enumeration. The main differences to consider are:

1.  In a domain lo..hi there are infinite values to consider. Hence enumeration cannot
be a simple test of the alternative values, backtracking if necessary.

2.  Constraints should consider variables whose domains are intervals, and adapt
standard arithmetic to consider such domains – interval arithmetic.

3.  Advanced methods can be used to propagate constraints, more sophisticatd than
naïve methods adapted from the finite domains (e.g. interval Newton).

4.  Approximations are often necessary (e.g. rounding off arithmetic operations) and
care must be taken that errors are not made (so as to loose solutions).

Constraints in these continuous domains will be covered in the second part of the
course, by Prof. Jorge Cruz.

103

19 September 2016 Constraint Programming

Constraint Programming – Continuous Domains

A summary of this second part:

1.  Continuous Constraint Satisfaction Problems

2.  Continuous Constraint Reasoning

a.  Representation of Continuous Domains

b.  Pruning and Branching

3.  Solving Continuous CSPs

a.  Constraint Propagation

b.  Consistency Criteria

4.  Practical Examples

104

19 September 2016 Constraint Programming

Constraint Programming – Continuous Domains

A major concern of dealing with continuous constraints regards constraint propagation.

For these part of the course some topics will be dealt more formally, namely:

1.  Interval Constraints Overview

2.  Intervals, Interval Arithmetic and Interval Functions

3.  Interval Newton Method

4.  Associating Narrowing Functions to Constraints

5.  Constraint Propagation and Consistency Enforcement

105

19 September 2016 Constraint Programming

Assessment

-  Evaluation consists of the following components
§  Project 1 – Finite Domains Problem
§  Mini-Test 1 – Finite Domains Concepts
§  Project 2 – Continuous Domains Problem
§  Mini-Test 2 – Continuous Domains Concepts

-  Projects are made in team work (2 students per group) and the tests assess the
students individually.

-  All components have the same weight for the final grade.

-  Students that do not get the minimum grade, are allowed to do a repetition exam if they
get at least an average grade of 8/20 in the two projects.

-  Exact dates to be announced –
§  Project 1 and Mini-test 1 at mid-term (mid November)
§  Project 2 and Mini-test 2 at the end of semester (mid December)

106

