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Constraint Programming 

-  An overview 

• Examples of decision (making) problems 

• Complexity and need for search 

• Declarative Modelling with Constraints 

•  Constraint Programming 

•  Finite and Continuous Domains 
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Constraint Problems: Examples 

-  Decision Making Problems include: 

§  Modelling of Digital Circuits 

§  Production Planning 

§  Network Management 

§  Scheduling 

§  Assignment (Colouring, Latin/ Magic Squares, Sudoku, Circuits, ...) 

§  Assignment and Scheduling (Timetabling, Job-shop) 

§  Filling and Containment 

-  Typically a problem may be represented by different models, some of which 
may be more adequate (ease of modeling, efficiency of solving in a given 
solver, etc) 
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Modeling of Digital Circuits 

Goal (Example): Determine a test pattern that detects some faulty gate 

-  Variables:  
§  Signals in the circuit 

-  Domain:  
§  Booleans: 0/1 (or True/False, or High/Low) 

-  Constraints:  
§  Equality constraints between the output of a gate and its “boolean 

operation” (e.g. and, or, not, nand, ...)  

A 

C 

D 

B 

E 

F 

G 

H 

I 

G1 

G2 

G3 

G4 

G5 

E = or(A,B)  % G1  
F = nand(B,C)  % G2 
G = and(B,C)  % G3  
H = nand(E,F)  % G4 
I = nand(F,G)  % G5 
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Production Planning 

Goal (Example): Determine a production plan 

-  Variables:  
§  Quantities of goods to produce 

-  Domain:  
§  Rational/Reals or Integers 

-  Constraints:  
§  Equality and Inequality (linear) constraints to model resource limitations, 

minimal quantities to produce, costs not to exceed, balance conditions, 
etc... 

Find x, y and z such that 
 4x+ 3y + 6z ≤ 1500   % resources used do not exceed 1500 
  x + y + z >= 300  % production not less than 300 units 
  x ≤ z + 20   % x units within z ± 20 units 
  x ≥ z - 20 
  x, y, z ≥ 0   % non negative production 
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Network Management 

Goal (Example): Determine acceptable traffic on a netwok 

-  Variables:  
§  Flows in each edge 

-  Domain:  
§  Rational/Reals (or Integers) 

-  Constraints:  
§  Equality and Inequality (linear) constraints to model capacity limitations, 

flow maintenance, costs, etc... 

Find x,y,z, a,b,c,d,e such that 
   x ≥ 6, z ≥ 10       % minimum flow 
   a ≤ 5, ... , f ≤ 6  % capacity 
% flow maintenance 
  x = a, y = b + c, a + b + d = e,  
  c = d + f, e + f = z 
  x, y ,z, a, b, c, d, e, f ≥ 0 

5/a 

2/d 
8/e 

6/f 

3/b 

7/c 

x 

y 

z 
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Schedulling 

Goal (Example): Assign timing/precedence to tasks 

-  Variables:  
§  Start Timing of Tasks, Duration of Tasks 

-  Domain:  
§  Rational/Reals or Integers 

-  Constraints:  
§  Precedence Constraints, Non-overlapping constraints, Deadlines, etc... 

Find Sa ,..., Se, such that 
  Sb ≥ Sa+Ta,              % precedence 
    .... 
  (Sc ≥ Sb+Tb) ∨ (Sb ≥ Sc+Tc) % non overlap 
    ...,  
  6 ≥ Sa+Ta               % deadline 
  Sa,..., Se ≥0 

Sa 

Sc 

Sb 

Se 

Sd Ta 

Ta 

Tb 

Tc 

Td 
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Assignment 

  

Many constraint problems can be classified as assignment problems. In general 
all that can be stated is that these problems follow a general CSP goal :  

  Assign values to the variables to satisfy the relevant constraints. 

–  Variables:  

§  Objects / Properties of objects 

–  Domain:  

§  Finite Discrete /Integer or Infinite Continuous /Real or Rational Values  

§  colours, numbers, duration, load 

§  Booleans for decisions 

–  Constraints:  

§  Compatibility (Equality, Difference, No-attack, Arithmetic Relations) 

Some examples may help to illustrate this class of problems  
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Assignment (2) 

A 
B 

C 
D 

E 

F 

Graph Colouring (0/1 or Booleans – but not SAT) 

Assign values to A1,A2, .., F1,F2 
  s.t.  Ar, Ab, Ag, .., Fr, Fb, Fg ∈ {0,1} 
% one and only one colour for A, B, ..., F 

 Ar + Ab + Ag = 1; 
 .... 

% different colours for A and B, ...   
Ar + Br <= 1; Ab + Bb <= 1; Ag + Bg <= 1; 

 .... 

A 
B 

C 
D 

E 

F 

Graph Colouring (Finite Domains) 

Assign values to A, .., F, 

  s.t.  A, B, .., F ∈ {red, blue, green} 
 A ≠ B, A ≠ C, A ≠ D, 
 B ≠ C, B ≠ F, C ≠ D, C ≠ E, C ≠ F 
 D ≠ E, E ≠ F 
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Assignment (3) 

Q1

Q2

Q3

Q4

N-queens (Finite Domains):  

Assign Values to Q1,..., Qn ∈ {1,.., n} 

s.t.   ∀i≠j noattack (Qi, Qj) 

Latin Squares (similar to Sudoku): 

Assign Values to X11,..., X33 ∈ {1,.., 3} 

s.t. ∀k ∀i ∀j≠i Xki ≠ Xkj   % same row 

     ∀k ∀i ∀j≠i Xik ≠ Xjk   % same column 

X11 X12 X13
X21 X22 X23
X31 X32 X33

Magic Squares: 
Assign Values to X11,..., X33 ∈ {1,..,9} 
s.t. ∀i ∀j≠i Σk Xki = Σk Xkj = M % same rows sum 
     ∀i ∀j≠i Σk Xik = Σk Xjk = M % same cols sum 
            Σk Xkk = Σk Xk,n-k+1 = M     % diagonals 
     ∀i≠k ∨ ∀j≠l Xij ≠ Xkl       % all different 

X11 X12 X13
X21 X22 X23
X31 X32 X33
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Assignment (3) 

Travelling Salesperson (Finite Domains) 
Find values for A, B, C, D ∈ {1,..,4}  
   s.t. A ≠ B, ..., C ≠ D  
        % a permutation of [A,B,C,D] 
        if A = B+1 then XA = Lba, 
        ... 
        if D = C+1 then XD = Lcd 
        XA + XB + XC + XD  ≤ k 

A B 

C D 

23 

18 

33 

17 13 21 

Travelling Salesperson (0/1 or Booleans – but not SAT) 

Find decision values for Xab...Xdc ∈ {0,1}  

  s.t.  ∀a Σk Xak = 1 

  ∀a Σk Xka = 1 

        ... no subcycle constraints 

	ΣaΣb Xab Lab < k 

A B 

C D 

23 

18 

33 

17 13 21 
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Mixed: Assignment and  Scheduling 

Goal (Example): Assign values to variables 

-  Variables:  
§  Start Times, Durations, Resources used 

-  Domain:  
§  Integers (typicaly) or Rationals/Reals 

-  Constraints:  
§  Compatibility (Disjunctive, Difference, Arithmetic Relations)   

Job-Shop 
Assign values to Sij ∈ {1,..,n} % time slots 

    and to Mij ∈ {1,..,m} % machines available 
% precedence within job  

 ∀j ∀i < k Sij + Dij ≤ Skj 
 % either no-overlap or different machines  

 ∀i,j,k,l (Mij ≠ Mkl) ∨ (Sij + Dij ≤ Skl) ∨ (Skl + Dkl ≤ Sij) 
 

J1

J2

J3

J4

1 2 3

1 2 3

1 2 3

1 2 3
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Filling and Containment 

Goal (Example): Assign values to variables 

-  Variables:  
§  Point Locations 

-  Domain:  
§  Integers (typicaly) or Rationals/Reals 

-  Constraints:  
§  Non-overlapping (Disjunctive, Inequality)   

Fiiling 
Assign values to Xi ∈ {1,.., Xmax} % X-dimension 

    Yi ∈ {1,.., Ymax} % Y-dimension 
% no-overlapping rectangles 
   ∀i,j  (Xi+Lxi ≤ Xj)   % I to the left of J 

  (Xj+Lxj ≤ Xi)   % I to the right of J 
  (Yi+Lyi ≤ Yj)   % I in front of J 
  (Yj+Lxj ≤ Xi)   % I in back of J 

D

G

I

BC
A

J
H

E

F
K
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Constraint Satisfaction Problems 

-  Other Examples (from CP-16): 

-  Finding Patterns for DataMining 

-  Rather than finding rules (as in ID3 /CS4.5) whole sets must be obtained 

-  e.g. sequences of letters in AND / Protein searches 

-  Hospital Residence Problem (with pairs) 

-  Kind of Stable Marriage Problem but pairings make it NP-Hard 

-  Both Hospitals and Residents (junior doctors) have a list of preferences  
-  Pairs of Residents have joint preferences 
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Constraint Satisfaction Problems 

-  Formally a constraint satisfaction problem (CSP) can be regarded as a  tuple 
<X, D, C>, where  

-  X = { X1, ... , Xn} is a set of variables 

-  D = { D1, ... , Dn} is a set of domains (for the corresponding variables) 

-  C = { C1, ... , Cm} is a set of constraints (on the variables) 

-  Solving a constraint problem consists of determining values xi ∈ Di for each 
variable Xi, satisfying all the constraints C. 

-  Intuitively, a constraint Ci is a limitation on the values of its variables.  

-  More formally, a constraint Ci (with arity k) over variables Xi1, ..., Xik ranging 
over domains Di1, ..., Dik is a subset of the cartesian cartesian Dj1× ... × Djk. 

Ci ⊆ Dj1× ... × Djk 
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Constraints and Optimisation Problems 

-  In many cases, one is interested not only in satisfying some set of constraints 
but also in finding among all solutions those that optimise a certain objective 
function (minimising a cost or maximising some positive feature). 

-  Formally a constraint (satisfaction and) optimisation problem (CSOP or COP) 
can be regarded as a  tuple <V, D, C, F>, where  

-  X = { X1, ... , Xn} is a set of variables 

-  D = { D1, ... , Dn} is a set of domains (for the corresponding variables) 

-  C = { C1, ... , Cm} is a set of constraints (on the variables) 

-  F is a function on the variables 

-  Solving a constraint satisfaction and optimisation problem consists of 
determining values xi ∈ Di for each variable Xi, satisfying all the constraints C 
and that optimise the objective function. 
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Decision Problems are NP-complete 

-  All the problems presented are decision problems in that a decision has to be 
made regarding the value to assign to each variable. 

-  Non-trivial decision making problems are untractable, i.e. they lie in the class of 
NP problems. 

-  Formally, these are the problems that can be solved in polinomial time by a non-
deterministic machine, i.e. one that “guesses the right answer”. 

-  For example, in the graph colouring problem (n nodes, k colours), if one has to 
assign colours to n nodes, a non-deterministic machine could guess a solution in 
O(n) steps. 

-  As a class, NP-complete problems may be converted in polinomial time onto 
other NP-complete problems (SAT, in particular). 

NP Problem SAT 

16 



19 September 2016 Constraint Programming 

Decision Problems are NP-complete 

-  No one has already found a polynomial algorithm to solve SAT (or any other NP 
problem), and hence the conjecture P ≠ NP (perhaps one of the most challenging 
open problems in computer science) is regarded as true. 

-  Hence, with real machines and non trivial problems, one has to guess the adequate 
values for the variables and make mistakes. In the worst case, one has to test O(kn) 
potential solutions.  

-  Just to have an idea of the complexity, the table below shows the time needed to 
check kn solutions, assuming one solution is examined in 1 µsec (times in secs). 

  

  

 

 

 

 1 hour = 3.6 * 103 sec      1 year = 3.2 * 107 sec          TOUniv = 4.7 * 1017 sec 

10 20 30 40 50 60

2 1.0E-03 1.0E+00 1.1E+03 1.1E+06 1.1E+09 1.2E+12

3 5.9E-02 3.5E+03 2.1E+08 1.2E+13 7.2E+17 4.2E+22

4 1.0E+00 1.1E+06 1.2E+12 1.2E+18 1.3E+24 1.3E+30

5 9.8E+00 9.5E+07 9.3E+14 9.1E+21 8.9E+28 8.7E+35

6 6.0E+01 3.7E+09 2.2E+17 1.3E+25 8.1E+32 4.9E+40

n

k

nk

17 

kn 
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Decision Problems are NP-complete 

-  Still, constraint solving problems are NP-complete problems (as SAT is).  

-  If a non-deterministic machine (that guesses correctly) can solve a problem in 
polynomial time, then a real deterministic machine can check in polinomial time 
whether a potential solution satisfies all the constraints. 

-  More important: with an appropriate search strategy, many instances of NP-
complete problems can be solved in quite acceptable times. 

-  Hence, search plays a fundamental role in solving this kind of problems. 
Adequate search methods and appropriate heuristics can often solve large 
instances of these problems in very acceptable time. 
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Search Strategies 

-  There are two main types of search strategies that have been adopted to solve 
combinatorial problems: 

Complete Backtrack Search Methods: 

-  Solutions are incrementally completed, by assigning values to “undecided” 
variables and backtrack whenever any constraint is violated; 

-  These methods are complete: if a solution exists it is found in finite time. 

-  More importantly, they can proof non-satisfiability. 

Incomplete Local Search Methods: 

-  Complete “solutions” are incrementally repaired, by changing the values 
assigned to some of the variables until a “real solution” is found; 

-  These local search methods are not guaranteed to avoid revisiting the same 
solutions time and again and are therefore incomplete. 

-  They are often very efficient to find very good solutions (local optima) 

19 



19 September 2016 Constraint Programming 

Optimisation Problems are NP-hard 

-  Optimisation problems are typically NP-hard problems in that solving them is at 
least as difficult as solving the corresponding decision problem.  

-  In practice these problems cannot be solved in polynomial time by a non-
deterministic machine, not can they be checked by a deterministic machine. 

-  In fact, to find an optimal solution it is not enough to find it ...  It is necessary to 
show that it is better than all other solutions! 

-  Being harder than the decision problems, optimisation problems also require 
adequate search strategies, if larger instances are to be solved.  

-  In complete search, detection of failure and subsequent backtracking may 
be imposed if the partial solution can be proved to be no better than one 
already found (branch & bound). 
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Constraint Programming 

Constraint Programming (and Languages) is driven by a number of goals 

-  Expressivity  

-  Constraint Languages should be able to easily specify the variables, 
domains and constraints (e.g. conditional, global, etc...); 

-  Declarative Nature 

-  Ideally, programs should specify the constraints to be solved, not the 
algorithms used to solve them 

-  Efficiency 

-  Solutions should be found as efficiently as possile, i.e. with the 
minimum possible use of resources (time and space). 

These goals are partially conficting goals and have led to the various 
developments in this research  and development area. 
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Declarative Programming 

-  Programming a combinatorial problem thus requires  

§  the specification of the constraints of the problem 

§  The specification of a search algorithm 

-  The separation of these two aspects has for a long time been advocated by 
several programming paradigms, namely functional programming and logic 
programming. 

-  Logic programming in particular has a built-in mechanism for search  
(backtracking) that makes it easy to extend into constraint (logic) constraint 
programming, by “replacing” its underlying resolution to constraint  
propagation. A number of Constraint Logic Programming languages have 
been proposed (CHIP, ECLiPSE, GNU Prolog, SICStus) to explore this 
extension of logic programming.  

-  More recently, other declarative languages such as Comet (OO-like), Choco 
(Java Library) and  Zinc, provide more convenient data structures for 
modelling, maintaining a declarative approach. 
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Constraint Programming 

Constraint Programming (and Languages) is driven by a number of goals 

-  Expressivity  

-  Constraint Languages should be able to easily specify the variables, 
domains and constraints (e.g. conditional, global, etc...); 

-  Declarative Nature 

-  Ideally, programs should specify the constraints to be solved, not the 
algorithms used to solve them 

-  Efficiency 

-  Solutions should be found as efficiently as possible, i.e. with the 
minimum possible use of resources (time and space). 

These goals are partially conflicting goals and have led to the various 
developments in this research  and development area. 
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Search Methods – Pure Backtracking 

-  The same specification can lead to different search strategies when sequentially 
assigning values to variables. 

-  The simplest backtracking strategy sees constraints in a passive form: 

§  Whenever a variable is assigned a variable, the constraints whose variables 
are  assigned variables are checked for satisfaction 

§  If this is not the case, the search backtracks (chronological backtrack). 

-  This is a typical generate and test procedure 

§  Firstly, values are generated 

§  Secondly, the constraints are tested for satisfaction. 

-  Of course, tests should be done as soon as possible, i.e. a constraint is 
checked whenever all its variables are assigned values. 

-  This procedure is illustrated in the 8-queens problem. 
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Backtracking 

Tests  0        Backtracks 0 
19 September 2016 Constraint Programming 
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Backtracking 

Tests  0 +1 = 1        Backtracks 0 

Q1 \= Q2,  L1+Q1 \= L2+Q2,  L1+Q2 \= L2+Q1. 
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Backtracking 

Q1 \= Q2,  L1+Q1 \= L2+Q2,  L1+Q2 \= L2+Q1. 

Tests  1 +1 = 2        Backtracks 0 

19 September 2016 Constraint Programming 
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Backtracking 

Q1 \= Q2,  L1+Q1 \= L2+Q2,  L1+Q2 \= L2+Q1. 

Tests  2 +1 = 3        Backtracks 0 
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Backtracking 

Tests  3 +1 = 4        Backtracks 0 
19 September 2016 Constraint Programming 
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Backtracking 

Tests  4 +2 = 6        Backtracks 0 
19 September 2016 Constraint Programming 
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Backtracking 

Tests  6 + 1 = 7      Backtracks 0 
19 September 2016 Constraint Programming 
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Backtracking 

Tests  7 + 2 = 9      Backtracks 0 
19 September 2016 Constraint Programming 
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Backtracking 

Tests  9 + 2 = 11      Backtracks 0 
19 September 2016 Constraint Programming 
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Backtracking 

Tests  11 + 1 + 3 = 15     Backtracks 0 
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Backtracking 

Tests  15+1+4+2+4 = 26      Backtracks 0 
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Backtracking 

Tests 26+1 = 27              Backtracks 0 
19 September 2016 Constraint Programming 
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Backtracking 

Tests  27 + 3 = 30        Backtracks 0 
19 September 2016 Constraint Programming 
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Backtracking 

Tests  30+2 = 32    Backtracks 0 
19 September 2016 Constraint Programming 
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Backtracking 

Tests  32 + 4 = 36          Backtracks 0 
19 September 2016 Constraint Programming 
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Backtracking 

Tests  36 + 3 = 39          Backtracks 0 
19 September 2016 Constraint Programming 
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Backtracking 

Tests  39 + 1 = 40         Backtracks 0 
19 September 2016 Constraint Programming 
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Backtracking 

Tests  40 + 2 = 42         Backtracks 0 
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Backtracking 

Tests  42 + 3 = 45         Backtracks 0 
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Backtracking 

Tests  45                 Backtracks 0+ 1 = 1 

Q6 Fails  

Backtracks 
to 

Q5 
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Backtracking 

Tests  45                                           Backtrackings 1 
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Backtracking 

Tests  45 + 1 = 46                            Backtracks 1 
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Backtracking 

Tests  46 + 2 = 48                            Backtracks 1 
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Backtracking 

Tests  48 + 3 = 51                            Backtracks 1 
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Backtracking 

Tests  51 + 4 = 55                            Backtracks 1 
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Backtracking 

Tests  55+1+3+2+4+3+1+2+3 = 74         Backtracks 1+2 = 3 

Q6 Fails  

Backtracks 
to 

Q5 

and next to 

Q4 
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Backtracking 

Tests  74+2+1+2+3+3=  85            Backtracks 3 
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Backtracking 

Tests  85 + 1 + 4 =  90                              Backtracks 3 
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Backtracking 

Tests  90 +1+3+2+5 =  101                       Backtracks 3 
19 September 2016 Constraint Programming 
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Backtracking 

Tests  101+1+5+2+4+3+6=  122              Backtracks 3 
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Backtracking 

Tests  122+1+5+2+6+3+6+4+1=  150      Backtracks 3+1=4 

Q8 Fails  

Backtracks 
to 

Q7 
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Backtracking 

Tests  150+1+2= 153                        Backtracks 4+1=5 

Q7 Fails  

Backtracks 
to 

Q6 
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Backtracking 

Tests  153+3+1+2+3= 162               Backtracks 5+1=6 

Q6 Fails  

Backtracks 
to 

Q5 
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Backtracking 

Tests  162+2+4= 168                        Backtracks 6 
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Backtracking 

Tests  168+1+3+2+5+3+1+2+3= 188       Backtracks 6+1 = 7 

Q6 Fails  

Backtracks 
to 

Q5 
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Backtracking 

Tests  188+1+2+3+4= 198               Backtracks 7+1=8 

Q5 Fails  

Backtracks 
to 

Q4 
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Backtracking 

Tests  198 + 3 = 201                         Backtracks 8 
19 September 2016 Constraint Programming 



62 

Backtracking 

Tests  201+1+4 = 206                               Backtracks 8 
19 September 2016 Constraint Programming 
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Backtracking 

Tests  206+1+3+2+5 = 217                       Backtracks 8 
19 September 2016 Constraint Programming 
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Backtracking 

Tests  217+1+5+2+5+3+6 = 239              Backtracks 8 
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Backtracking 

Tests  239+1+5+2+4+3+6+7+7= 274       Backtracks 8+1 = 9 

Q8 Fails  

Backtracks 
to 

Q7 
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Backtracking 

Tests  274+1+2= 277                    Backtracks 9+1=10 

Q7 Fails  

Backtracks 
to 

Q6 
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Backtracking 

Tests  277+3+1+2+3= 286           Backtracks 10+1=11 

Q6 Fails  

Backtracks 
to 

Q5 
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Backtracking 

Tests  286+2+4= 292                         Backtracks 11 
19 September 2016 Constraint Programming 
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Backtracking 

Tests  292+1+3+2+5+3+1+2+3= 312     Backtracks 11+1=12 

Q6 Fails  

Backtracks 
to 

Q5 
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Backtracking 

Tests  312+1+2+3+4= 322           Backtracks 12+2=14 

Q5 Fails  

Backtracks 
to 

Q4 

and next to 

Q3 
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Backtracking 

Tests  322 + 2 = 324                    Backtracks 14 

Q1 = 1 

Q2 = 3 

Q3 = 5 

Impossible ! 

19 September 2016 Constraint Programming 
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Search Methods (2) – Backtracking + Propagation 

-  A more efficient backtracking search strategy sees constraints as active 
constructs: 

§  Whenever a variable is assigned a variable, the consequences of such 
assignment are taken into account to narrow the possible values of the 
variables not yet assigned. 

§  If for one such variable there are no values to chose from, then a failure 
occurs and the search backtracks. 

-  This is a typical test and generate procedure 

§  Firstly, values are tested to check their possible use. 

§  Secondly, the values are assigned to the variables. 

-  Clearly, the reasoning that is done should have the adequate complexity 
otherwise the gains obtained from the narrowing of the search space are offset 
by the costs of such narrowing. 

-  This procedure is illustrated again with the 8-queens problem. 
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Search Methods (2) – Backtracking + Propagation 

Tests  0                                                  Backtracks 0 
19 September 2016 Constraint Programming 
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Search Methods (2) – Backtracking + Propagation 

1 1 

1 

1 

1 

1 

1 1 

1 

1 

1 

1 

1 

1 
Tests  8 * 7 = 56                     Backtracks 0 

Q1 #\= Q2,  L1+Q1 #\= L2+Q2,  L1+Q2 #\= L2+Q1. 
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75 

Search Methods (2) – Backtracking + Propagation 

1 1 

1 

1 

1 

1 

1 1 

1 

1 

1 

1 

1 

1 2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

Tests  56 + 6 * 6 = 92                     Backtracks 0 
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Search Methods (2) – Backtracking + Propagation 

1 1 

1 

1 

1 

1 

1 1 

1 

1 

1 

1 

1 

1 2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

3 

3 

3 

3 

3 

3 3 

Tests  92 + 21 = 113                   Backtracks 0 
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Search Methods(2a)  – B+P w/Heuristics 

-  In both types of backtrack search (pure backtracking as well as in backtracking + 
propagation) there is a need for heuristics. 

-  After all, in decision problems with n variables, a perfect heuristics would find a 
solution (if there is one) in exactly n steps (i.e. with n decisions – polinomial time). 

-  Of course, there are no such perfect heuristics for non-trivial problems (this would 
imply P = NP, a quite unlikely situation), but good heuristics can nonetheless 
significantly decrease the search space. Typically a heuristics consists of 

§  Variable selection: The selection of the next variable to assign a value 

§  Value selection: Which value to assign to the variable 

-  The adoption of a backtrack + propagation search method allows better heuristics 
to be used, that are not available in pure backtrack search methods. 

-  In particular a very simple heuristics, first-fail, is often very useful: whenever a 
variable is restricted to take a single value, select that variable and value. 

-  This procedure is again illustrated with the 8-queens problem. 
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Search Methods(2a)  – B+P w/Heuristics 

1 1 

1 

1 

1 

1 

1 1 

1 

1 

1 

1 

1 

1 2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

3 

3 

3 

3 

3 

3 3 

Tests  92 + 21 = 113                   Backtracks 0 

Q6  

may only 
take value 

 4 

19 September 2016 Constraint Programming 



80 

Search Methods(2a)  – B+P w/Heuristics 
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Search Methods(2a)  – B+P w/Heuristics 
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Search Methods(2a)  – B+P w/Heuristics 
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Search Methods(2a)  – B+P w/Heuristics 
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Search Methods(2a)  – B+P w/Heuristics 
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Search Methods(2a)  – B+P w/Heuristics 
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Search Methods(2a)  – B+P w/Heuristics 
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Search Methods(2a)  – B+P w/Heuristics 
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Search Methods(2a)  – B+P w/Heuristics 
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Search Methods(2a)  – B+P w/Heuristics 
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Search Methods(2a)  – B+P w/Heuristics 
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Search Methods(2a)  – B+P w/Heuristics 
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Search Methods(2a)  – B+P w/Heuristics 
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Search Methods – B+P w/Heuristics 

-  The adoption of constraint propagation and backtrack is more efficient for three 
main reasons: 

§  Early detection of Failure: 

•  In this case, after placing queens Q1 = 1, Q2 = 3 and Q3 = 5, a failure is 
detected without any backtracking. 

§  Relevant backtracking:  

•  Although a failure is detected in Q7, backtracking is done to Q3, and to 
none of the other queens (Q4, Q5, Q6 and Q8, that are not relevant).  

•  With pure backtracking many backtracks were done to undo choices in 
these queens. 

§  Heuristics:  

•  Constraint Propagation makes it easy to adopt heuristics based on the 
remaining values of the unassigned variables. 
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Constraint Programming by Example 

An example: SEND+MORE = MONEY 

-  Find the digits encoded by letters, where different  letters stand for different 
digits,  and the symbolic sum below stands (the leftmost digits are not zero): 

  S E N D 
+ M O R E 
M O N E Y 

-  Similarly to all combinatorial problems, a declarative approach (as taken by 
Constraint Logic Programming) solves this problem by separating the two 
components: 

§  Model: What  are the variables that will be chosen for the problem 
unknowns, and the constraints that must be satisfied 

§  Search:  What strategies  are used to assign values to variables 
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Constraint Programming by Example 

Modelling 

-  There are two main steps in modelling a problem: 

1.  Choose variables to represent the unknowns 

•  What are the variables 

•  What values can they take 

2.  Select the constraints that these variables must satisfy according to the 
conditions of the problem; 

•  How to constrain the variables 

•  Are there alternative (more efficient?) sets of constraints? 

-  These decisions are often interdependent as illustrated in this problem.  

  S E N D 
+ M O R E 
M O N E Y 
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Constraint Programming by Example 

Model 1 : 
 

-  Variables Adopted: 

§  One variable for each letter (we use the letter as the name of the variable) 

§  Each variable takes values in 0 to 9 

-  Constraints to be Satisfied: 

§  All variables must be different; 

§  The sum must be correct 

§  No leading zeros 
 

  S E N D 
+ M O R E 
M O N E Y 
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Constraint Programming by Example 

Model 1 : In Comet, this model is specified as follows 
 
% // import cotfd;  
enum Letters = {s,e,n,d,m,o,r,y}; 
range Rng = 0 .. 9; 
Solver<CP> cp();  
var<CP>{int} q[Letters](cp,Rng); 
solve<cp>{ 
  cp.post(q[s] != 0);        % No leading zeros 
  cp.post(q[m] != 0); 
  cp.post(alldifferent(q));  % All variables are different 
      % The sum must be correct 
  cp.post(1000*q[s]+100*q[e]+10*q[n]+q[d] 
        +  1000*q[m]+100*q[o]+10*q[r]+q[e] 
         == 10000*q[m]+1000*q[o]+100*q[n]+10*q[e]+q[y]); 
} using 
  labelFF(q); 

C4 C3 C2 C1 
    S  E  N  D 
 +  M  O  R  E 
 M  O  N  E  Y 
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Constraint Programming by Example 

Model 2 : 

-  There is an alternative modelling, that represents the total sum as it is usually 
operated with “carries”  

§  One variable for each letter (we use the letter as the name of the variable) 

•  Each variable takes values in 0 to 9 

§  4 Carries  

•  Each carry takes value 0 or 1 

-  Constraints to be Satisfied: 

§  All variables must be different; 

§  All the sums (digit by digit, including carries) must be correct 

§  No leading zeros 
 

C4 C3 C2 C1 
    S  E  N  D 
 +  M  O  R  E 
 M  O  N  E  Y 
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Constraint Programming by Example 

Model 2 : This alternative model can also be expressed in Comet 

enum Letters = {s,e,n,d,m,o,r,y}; 
range Rng = 0 .. 9; 
Solver<CP> cp();  
  var<CP>{int} q[Letters](cp,Rng); 
  var<CP>{int} c[1..4](cp,0..1); 
solve<cp>{ 
  cp.post(q[s] != 0);  % No leading zeros 
  cp.post(q[m] != 0); 
  cp.post(alldifferent(q));  % All variables are different 
       % The sum must be correct 
  cp.post(q[d] + q[e]        == q[y] +10 * c[1]); 
  cp.post(q[n] + q[r] + c[1] == q[e] +10 * c[2]); 
  cp.post(q[e] + q[o] + c[2] == q[n] +10 * c[3]); 
  cp.post(q[s] + q[m] + c[3] == q[o] +10 * c[4]); 
  cp.post(              c[4] == q[m]); 
} using { labelFF(q); labelFF (c)} 

C4 C3 C2 C1 
    S  E  N  D 
 +  M  O  R  E 
 M  O  N  E  Y 
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Constraint Programming by Example 

Model 3 : 

-  Even the constraints might often be expressed in alternative ways. The 
constraint that all letters are different can be expressed by the primitive global 
constraint alldifferent(q), or obtained by conjunction of the individual pairwise 
different (!=) constraints: 

 

-  As will be seen later, when available, global constraints typically lead to much 
more efficient execution. 

 

// cp.post(alldifferent(q)); 
 
forall(i in letters, j in letters: i!=j) 

 cp.post(q[i] != q[j]); 
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Constraint Programming by Example 

Enumeration : 

-  Once the variables are declared and the constraints posted, the constraint 
solver should find values for the variables in some efficient way. 

-  This is because the underlying constraint propagation process does not 
guarantee that the problem has a solution! 

-  It simply removes values from the domain of variables that guaranteedly do not 
belong to any solution. 

-  The enumeration is typically achieved in Comet with function label/1, that 
assigns values to the input variables and backtracks when this is impossible. 

-  The labelling process may be more or less efficient, depending on the 
heuristics used. A fairly good heuristic is the fail-first that assigns values to the 
variables with less values in their domains. In Comet, that may be expressed 
by function labelFF/1. 

-  More sophisticated heuristics may nevertheless be programmed by the user. 
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Constraint Programming – Finite Domains 

-  The efficiency obtained in solving a problem with CP depends on many issues that will 
be addressed in the course: 

1.  Formalization of Constraint Propagation 

2.  Types of constraints and their main features  

3.  Alternative models  

a.  Redundant Constraints 

b.  Symmetry Breaking Constraints 

4.  Heuristics that are most commonly used 

5.  Testing these techniques with Comet in several non-trivial examples 
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Constraint Programming – Continuous Domains 

Continuous constraints require somewhat different methods for constraint propagation 
as well as enumeration. The main differences to consider are: 

1.  In a domain lo..hi there are infinite values to consider. Hence enumeration cannot 
be a simple test of the alternative values, backtracking if necessary. 

2.  Constraints should consider variables whose domains are intervals, and adapt 
standard arithmetic to consider such domains – interval arithmetic. 

3.  Advanced methods can be used to propagate constraints, more sophisticatd than 
naïve methods adapted from the finite domains (e.g. interval Newton). 

4.  Approximations are often necessary (e.g. rounding off arithmetic operations) and 
care must be taken that errors are not made (so as to loose solutions). 

Constraints in these continuous domains will be covered in the second part of the 
course, by Prof. Jorge Cruz. 
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Constraint Programming – Continuous Domains 

A summary of this second part: 

1.  Continuous Constraint Satisfaction Problems 

2.  Continuous Constraint Reasoning 

a.  Representation of Continuous Domains 

b.  Pruning and Branching 

3.  Solving Continuous CSPs  

a.  Constraint Propagation 

b.  Consistency Criteria 

4.  Practical Examples 
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Constraint Programming – Continuous Domains 

A major concern of dealing with continuous constraints regards constraint propagation. 

For these part of the course some topics will be dealt more formally, namely: 

1.  Interval Constraints Overview 

2.  Intervals, Interval Arithmetic and Interval Functions 

3.  Interval Newton Method 

4.  Associating Narrowing Functions to Constraints 

5.  Constraint Propagation and Consistency Enforcement 
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Assessment 

-  Evaluation consists of the following components 
§  Project 1 – Finite Domains Problem 
§  Mini-Test 1 – Finite Domains Concepts 
§  Project 2 – Continuous Domains Problem 
§  Mini-Test 2 – Continuous Domains Concepts 

-  Projects are made in team work (2 students per group) and the tests assess the 
students individually.  

-  All components have the same weight for the final grade. 

-  Students that do not get the minimum grade, are allowed to do a repetition exam if they 
get at least an average grade of 8/20 in the two projects. 

-  Exact dates to be announced –  
§  Project 1 and Mini-test 1 at mid-term (mid November) 
§  Project 2 and Mini-test 2 at the end of semester (mid December) 
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