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Search and Optimisation 

-  An overview 

• Global Constraints 

• Domain-consistency and specialised propagation 

• Global Constraints in COMET 

• Redundant Constraints 
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Types of Constraints 

-  So far, most of the constraints we have been dealing with are arithmetic and logical  
constraints, using the binary operators  

+  (addition) 
-  (subtraction) 
*  (multiplication) 
/  (integer division)  
%  (modulo)  
==  (equality):  

Sums and multiplications can be specified on an arbitrary number of operands (i.e. 
s = Σ i∈[1..k] xi  and p = Π i∈[1..k] xi) by means of the sum and prod aggregate 
operators (and also min and max). Other more complex constraints can be formed 
by logically combining these constraints with the operators  

!  (negation),  
&&  (and),  
||  (or),  
==  (equality),  
=>  implication) 
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Global Constraints: Table 

-  However, arbitrary constraints on an arbitrary number of variables might be not 
easily formed in this way. In some cases, the most convenient specification is by 
explicit enumeration of the accepted tuples.  

-  The table constraint is an example of a constraint given in extension. It constrains 
three variables (x[1], x[2], x[3]) to take values according to one of the enumerated 
triples contained in the Table<CP> object given as its parameter.  

-  The only available consistency is onDomains (generalised arc-consistency).  

int possibleTriples [1..4,1..3] =  
 [[2,4,2], [5,1,6], [2,1,7], [2,3,3]]; 

var<CP>{int} x[1..3](cp,1..5);  
solve<cp> { 
  Table<CP> t( all(i in 1..4) possibleTriples[i,1],  

  all(i in 1..4) possibleTriples[i,2],  
  all(i in 1..4) possibleTriples[i,3]); 

  
cp.post(table(x[1],x[2],x[3],t));  
}  
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Global Constraints 

-  Even when complex constraints can be formed by some form of aggregation of 
individual constraints (possibly through reification) it is often important to specify 
these aggregations as a single n-ary “global” constraint, for at least two reasons 

-  Simpler modelling of a problem  

-  Exploitation of specialised algorithms to achieve better propagation 

-  The following, very common example, clarifies these issues:  

 The set of n variables { X1 ... Xn } must all take different values. 

-  This problem can be modelled either as 

§  A set of nC2 constraints of difference Xi ≠ Xj (1 ≤ i < j ≤ n) 

§  A single all-different({ X1 ... Xn } ) global constraint. 

-  Of course, the second option is simpler, but should be more than syntactic sugar 
and allow a better pruning.  
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Global Constraints: allDifferent 

Example:  

 

 

-  Clearly, the decomposition of the global constraints into binary difference constraints 
does not lead to any pruning of the domain of the variables. 

-  Nevertheless, from the “pigeon hole” principle, it is easy to see that … 
variables X1, X5 and X8 take values 1, 2 and 3 among themselves (3 pigeons  
for 3 holes), values that can be pruned from the domain of the other variables.  

-  But then, for similar reasons, variables X4, X4 and X9 take values 4, 5 and 6, that 
are pruned from the domain of the other variables.  The following pruning should 
then be “easily” achieved 

 X1: 1,2,3  X2: 1,2,3,4,5,6  X3: 1,2,3,4,5,6,7,8,9  
 X4: 1,2,3,4,5,6  X5: 1,2,3  X6: 1,2,3,4,5,6,7,8,9 
 X7: 1,2,3,4,5,6,7,8,9  X8: 1,2,3  X9: 1,2,3,4,5,6 

 X1: 1,2,3  X2: 1,2,3,4,5,6  X3: 1,2,3,4,5,6,7,8,9  
 X4: 1,2,3,4,5,6  X5: 1,2,3  X6: 1,2,3,4,5,6,7,8,9 
 X7: 1,2,3,4,5,6,7,8,9  X8: 1,2,3  X9: 1,2,3,4,5,6 
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Global Constraints: allDifferent 

-  Only a few values (in green) 
are obtained by naïve all_diff. 

the indices show a possible order in 
which the cuts are made 

-  Global all_diff performs much 
more pruning and fixes some 
variables without backtracking. 

-  In particular, values may be 
obtained by application of the 
“pigeon-hole” principle. 

The first cuts are illustrated in the 
figure. 
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A more realistic example: SUDOKU 
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-  More general domain pruning is also obtained in this way, that will eventually lead 
to complete solving of this board without any backtracking 
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Global Constraints: allDifferent 

-  How easily can such pruning be achieved? 

-  Given the widespread use of this and other global constraints, specialised 
algorithms aim at achieving a pruning close to generalised arc-consistency, at some 
low cost (recall that a naïve adaptation of AC-3 to GAC-3 would lead to a worst case 
complexity of  O(n4 dk+1), clearly too costly to be of any use).  

-  The algorithm outlined next, maintains generalised arc-consistency, in a network of 
n variables. The algorithm (see [Regi94]), is grounded on graph theory, and uses 
the notion of bipartite graph matching. 

-  To begin with, a bipartite graph is associated to each all-different constraint. In 
such graph,  
§  there are nodes of two sorts: one representing variables and the other 

representing values; and  
§  The only arcs in the graph (bipartite) connect variables and values nodes: 

there is an arc between a variable node and a value node iff this value is in 
the domain of the variable  
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Global Constraints: allDifferent 

-  In polinomial time, it is possible to eliminate, from the graph, all arcs that do not 
correspond to possible assignments of the variables. 

Key Ideas: 

-  A matching, corresponds to a subset of arcs that link some variable nodes to value 
nodes, different variables being connected to different values. 

-  A maximal matching is a matching that includes all the variable nodes. 

-  Any solution of the all_diff constraint corresponds to one and only one maximal 
matching. 

A
B
C
D
E

1
2
3
4
5
6

A = 1 

B = 2 

C = 3 

D = 4 

E = 5 

Maximal Matching 

A in 1..2, B in 1..2, C in 1..3, D in 2..5, E in 3..6 



27 October 2015 Constraint Programming 9 

Global Constraints: allDifferent 

-  The propagation (domain filtering) is done according to the following principles:  

1. If an arc does not belong to any maximal matching, then it does not belong to 
any all_diff solution. 

2. Once determined some maximal matching, it is possible to determine whether 
an arc belongs or not to any maximal matching. 

3. This is because, given a maximal matching, an arc belongs to any maximal 
matching iff it belongs: 

a) To an alternating cycle; or 

b) To an even alternating path, starting at a free node. 
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Global Constraints: allDifferent 

Example: 

-  6 is a free node;  

•  6-E-5-D-4 is an even alternating path, alternating arcs included in the MM (E-5, D-4) 
and excluded (D-5, E-6); 

•  A-1-B-2-A is an alternating cycle; 

•  E-3 does not belong to any alternating cycle 

•  E-3 does not belong to any even alternating path starting in a free node (6) 

•  E-3 may be filtered out! 

 Elimination of other arcs 
by similar reasoning 
leads to the pruned 
bipartite graph 
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Global Constraints: allDifferent 

-  Upon elimination of some labels (arcs), possibly due to other constraints, the 
all_diff constraint propagates such pruning, incrementally.  

There are 3 situations to consider: 

1. Elimination of a vital arc (the only arc connecting a variable node with a value 
node):  

o  The constraint cannot be satisfied. 
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Global Constraints: allDifferent 

2.  Elimination of a non-vital arc which is a member to the maximal matching 

§  Determine a new maximal matching and restart from there. 
§  A new maximal matching includes arcs D-5 and E-6. In this matching, 

arcs E-4 and E-5 do not belong to even alternating paths or alternating 
cycle and should be pruned 
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3.  Elimination of a non-vital arc which is not a member to the maximal 
matching 

§  Eliminate the arcs not belonging anymore to an alternating cycle or path. 
§  Arc E-4 was only kept because of the even alternating path 6-E-5-D-4-A.  

Once arc E-6  disappears, so does arc E-4.  
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Global Constraints: allDifferent 
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Global Constraints: allDifferent 

Time Complexity: O(dn3/2). 

 Assuming n variables, each of which with d values, and where D is the cardinality of 
the union of all domains, 

1. It is possible to obtain a maximal matching with an algorithm of time complexity 
O(dn3/2). 

2. Arcs that do not belong to any maximal matching may be removed with time 
complexity O( dn+n+D). 

3. Taking into account these results, we obtain complexity of O(dn+n+D+dn3/2). Since 
D < dn, the total time complexity of the algorithm is dominated by the last term. 

Alternatives:  

-  Other specialised algorithms exist for this constraint, trading efficiency for pruning 
power. In particular, simpler algorithms exist that only impose bounds consistency on 
the variables. 
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Global Constraints: allDifferent 

 

-  The alldifferent function allows to state that each variable in an array of CP variables 
takes a different value.  

 

 

-  The available consistency levels are onValues(default) and onDomains (the first 
corresponds to the naïf implementation). 

-  The effect of the different consistency levels can be observed in the sudoku 
program applied to the data file presented as auxiliary to these slides. 

Solver<CP> cp(); 
var<CP>{int} x[1..5](cp,1..6);  
solve<cp> { 
  cp.post(alldifferent(x), onDomains); 
}  
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Global Constraints: allDifferent 

Alternatives:  

-  Puget designed the first bounds consistency algorithm for all-different, which is 
based on Hall’s theorem and runs in O(n log n) time.   

-  Mehlhorn and Thiel later showed that since the matching and SCC computations of 
Régin’s algorithm can be performed faster on convex graphs compared to general 
graphs, it is possible to achieve bounds consistency for all-different using the 
matching approach in O(n + n’) time, where n’ is the cardinality of D, plus the time 
required to sort the variables according to the endpoints of their domains. 

-  All-different is a special case of generalised cardinality constraint (gcc). Quimper et 
al. [54] discovered an alternative bounds consistency algorithm for gcc, based on the 
Hall interval approach, that only narrows the domains of the assignment variables. 
The “previous” algorithm, cf. later, narrows the domains of the assignment variables 
as well as the count variables, to bound consistency. 

-  See more in chapter 6 of the Handbook of Contraint Programming, F.Rossi and P. 
van Beek and T. Walsh, eds., Elsevier, 2006. 
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Global Constraints: Circuit 

-  The previous global constraints may be regarded as imposing a certain 
“permutation” on the variables. 

-  In many problems, such permutation is not a sufficient constraint. It is 
necessary to impose a certain “ordering” of the variables. 

-  A typical situation occurs when there is a sequencing of tasks, with 
precedences between tasks, possibly with non-adjacency constraints between 
some of them. 

-  In these situations, in addition to the permutation of the variables, one must 
ensure that the ordering of the tasks makes a single cycle, i.e. there must be 
no sub-cycles.  
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Global Constraints: Circuit 

-  These problems may be described by means of directed graphs, whose nodes 
represent tasks and the directed arcs represent precedences. 

 

 

 

 

-  The arcs may even be labelled by “features” of the transitions, namely their 
costs. 

-  This is a situation typical of several TSP-like problems (Traveling Salesman). 
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Global Constraints: Circuit 

-  Filtering: For these type of problems, the arcs that do not belong to any 
hamiltonian circuit should be eliminated. 

-  In the graph, it is easy to check that the only possible circuits are    
§  1  → 2  → 4 →  3 →  1 ; 
§  1  → 3  → 4 →  2 →  1 

-  Certain arcs (e.g. All unary such as 2 → 2, as well as some binary, e.g. 2 → 3), 
do not belong to any hamiltonian circuit and can (should !) be safely pruned. 
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Global Constraints: Circuit 

-  The pruning of the arcs that do not belong to any circuit is the goal of the global 
constraint circuit.  

-  The circuit constraint states that an array of variables has to represent a 
Hamiltonian circuit in a directed graph. Assume a weighted directed  graph G = (V, 
E), where (the third element of the E tuples is the weight or cost) 

•  V = {1,2,3,4} 

•  E = {(1,2,5),(1,3,9),(2,1,3),(2,2,2),(2,3,5),(2,4,8),(3,1,4),(3,3,2),(3,4,7),(4,2,6),(4,3,9) 

-  Representing the graph by the successor array of variables x, the circuit constraint 
forces x to represent an Hamiltonian circuit on G.  
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Global Constraints: Circuit 

-  The circuit constraint states that an array of variables has to represent a 
Hamiltonian circuit in a directed graph, adopting a representation of a graph by an 
array of successor nodes. 

 

 
 

import cotfd; 
range Nodes = 1..4; 
set{int} succ[Nodes] =  
   [{2,3},{1,2,3,4},{1,3,4},{2,3,4}]; 
Solver<CP> cp(); 
var<CP>{int} x [s in Nodes](cp,succ[s]);  
 
solveall<cp> { 
  cp.post(circuit(x));  
} using { 
  labelFF(x); 
  cout << x << endl; 
} 

1 2 

3 4 
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Global Constraints: Element 

-  The minimization of the cost of a circuit (e.g. the TSP: Travelling Salesman 
problem) can be obtained with the application of the Circuit and the Element 
constraints. 

-  The Element (or indexing) constraint allows to index an array of integers or 
variables by indices that are variables themselves. In the following example, array 
a is indexed by variable x to be linked with variable y.  

 

 

-  The available consistency levels are onBounds(default) and onDomains.  

-  In the latter case the domain of x is pruned to {3,4,7} and the domain of y to {4,6}.  

Solver<CP> cp(); 
int a[1..7] = [9,3,4,6,2,7,4];  
var<CP>{int} x(cp,1..7);  
var<CP>{int} y(cp,{1,4,6});  
solve<cp> {  
  cp.post(a[x] == y, onDomains); }  
} ... 



-  The combination of Circuit and Element is shown below to solve the TSP. 
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Global Constraints: Circuit+Element 

import cotfd; 
range Nodes = 1..4; 
set{int} succ[Nodes] =  
   [{2,3},{1,2,3,4},{1,3,4},{2,3,4}]; 
Solver<CP> cp(); 
var<CP>{int} x [s in Nodes](cp,succ[s]);  
var<CP>{int} cc(cp,0..100); 
int costs[Nodes,Nodes] =  
   [ [0,5,9,0],  
     [3,2,5,8],  
     [4,0,2,7], 
     [0,6,9,0] ]; 
minimize<cp> cc subject to { 
   cp.post(cc == sum(i in Nodes) 
      costs[i, x[i]]); 
   cp.post(circuit(x));  
} using 
   labelFF(x);  
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Global Constraints: minCircuit 

-  In fact, the minCircuit<CP> constraint is equivalent to the combination of the circuit 
and Element constraints (but more efficent !) : 

 
import cotfd; 
range Nodes = 1..4; 
set{int} succ[Nodes] =  
   [{2,3},{1,2,3,4},{1,3,4},{2,3,4}]; 
Solver<CP> cp(); 
var<CP>{int} x [s in Nodes](cp,succ[s]);  
var<CP>{int} cc(cp,0..100); 
int costs[Nodes,Nodes] =  
   [ [0,5,9,0],  
     [3,2,5,8],  
     [4,0,2,7], 
     [0,6,9,0] ]; 
minimize<cp> cc subject to 
  cp.post(minCircuit<CP>(x, costs, cc));  
using 
  labelFF(x);  
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Global Constraints: Global Cardinality 

-  Many scheduling and timetabling problems, have quantitative requirements such as 

 in these n “slots” m must have value v 

-  This type of requirements must be modelled by cardinality constraints, that count 
the number of occurrences of value v in a solution of the problem. 

-  Typically slots may be represented by an array of FD variables and for all values 
some bounds on the cardinality are imposed.  

-  For example, to guarantee that all values v in some domain Dom (1..3) appears at 
least twice in an array x with 8 elements, the following constraint can be used 

Range Rng = 1..8; 
Range Dom = 1..3; 
var<CP>{int} x[Rng](cp,Dom);  
... 
forall(v in Dom)  
     cp.post ( (sum(i in Rng) (x[i] == v) ) >= 2); 
... 



27 October 2015 Constraint Programming 26 

Global Cardinality Constraints 

-  Imposing lower and upper bounds on the ocurrence of values in a solution may be 
imposed by atleast/atmost constraints. 

-  The atleast/atmost constraints guarantee a lower/upper bound on the number of 
occurrences of each value in an array of variables. The available consistencies are 
onValues (default) and onDomains.  

-  In the example below, the value 1 must appear 0 times, the values 2 at least 2 
times, the value 3 at least 1 time, and so on:  

 

-  where the atleast constraint is equivalent to 

 

Solver<CP> cp(); 
int low[1..5] = [0,2,1,3,0];  
var<CP>{int} x[1..6](cp,1..5);  
solve<cp> 
   cp.post(atleast(low,x)); 

forall(v in 1..5)  
     cp.post ( (sum(i in 1..6) x[i] == v ) <= low[v])  
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Global Cardinality Constraints 

-  Sometimes, a problem might require that a solution has exact number of 
occurrences of the values in a solution. Such requirement might be specified with a 
combination of atleast/atmost constraints sharing the same bounds, as in 

 

-  The same effect can be obtained with the exact constraint, as shown below. 

 

-  The available consistencies are onValues (default) and onDomains.  

Solver<CP> cp(); 
int occ[1..5] = [1,2,1,3,2];  
var<CP>{int} x[1..9](cp,1..5);  
solve<cp>{ 
   cp.post(atleast(occ,x)); cp.post(atmost(occ,x)); } 

Solver<CP> cp(); 
int occ[1..5] = [1,2,1,3,2];  
var<CP>{int} x[1..9](cp,1..5);  
solve<cp>{ 
   cp.post(exactly(occ,x)); 
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Global Cardinality Constraints 

-  Many problems may require different bounds on the number of occurrences, e.g. 
-  Lower bounds to guarantee that resources are used; and  
-  Upper bounds to guarantee that capacities are not exceeded. 

-  For example, assume a team of 7 people (nurses) where one or two must be 
assigned the morning shift (m), one or two the afternoon shift (a), one the night shift 
(n), while the others may be on holliday (h) or stay in reserve (r).  

-  Again this problem can be modelled with combined atleast/atmost constraints: 

range Workers = 1..7; 
enum Shifts = {m,a,n,h,r}; 
set{Shifts} dom[Workers] =  
    [{m,a},{m,a},{m,a},{m,a},{m,a,n},{a,n,h,r},{n,r}]; 
int lower[Shifts] = [1,1,1,0,0]; 
int upper[Shifts] = [2,2,1,5,5]; 
Solver<CP> cp(); 
var<CP>{int} w [i in Workers](cp,dom[i]);  
solve<cp> {  
  cp.post(atleast(lower,w)); cp.post( atmost(upper,w)); 
} 
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Global Cardinality Constraints 

-  Nevertheless, the separate, or local, handling of each of these constraints, does 
not detect all the pruning opportunities for the variables domains, as can be seen 
in the problem described.  

1,2,3,4::{m,a}, 5::{m,a,n}, 6::{a,n,h,r}, 7::{n,r}  

-  The workers and their domains can be represented by the following graph, where 
the pairs in the values represent the lower and upper bounds in a solution. 
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Global Cardinality Constraints 

-  Workers 1, 2, 3 and 4 may only take values m and a. Since these may only be 
attributed to 4 people, no one else, namely 5 or 6, may take these values m and a. 

-  Now worker 5 may now only take value n. Since this must be taken by a single 
person, no one else (e.g. 6 or 7) may take value n. 
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Global Cardinality Constraints 

-  This filtering, that could not be found in each constraint alone, can be obtained 
with an algorithm that uses analogy with results in maximum network flows. 

-  Such filtering is obtained in the global cardinality constraint, that combines the 
atleast and atmost constraint but explores a different propagation algorithm, based 
on maximal flows in graphs.  
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range Workers = 1..7; 
enum Shifts = {m,a,n,h,r}; 
set{Shifts} dom[Workers] = [{m,a},{m,a},
{m,a},{m,a},{m,a,n},{a,n,h,r},{n,r}]; 
int lower[Shifts] = [1,1,1,0,0]; 
int upper[Shifts] = [2,2,1,5,5]; 
Solver<CP> cp(); 
var<CP>{int} w [i in Workers](cp,dom[i]);  
solve<cp> {  
  cp.post(cardinality(lower, w, upper)); 
  // cp.post(atleast(lower, w));  
  // cp.post( atmost(upper, w)); 
} 
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Global Cardinality: NValue 

-  Sometimes there are no constraints over number of occurrences of specific 
values in a solution, but rather on the number of different values occurring in a 
solution (whatever the values may be). 

-  The atLeastNValue global constraint is a soft version of the alldifferent. It counts 
the number of different values in a vector of variables.  

-  The constraint maintains that the variable numberOfValues is the number of 
different values taken by the variables in the array x. In the example below the 
number of different values x[i] for the 5 variables should be between 3 and 5 (in 
the last case this corresponds to an all_different). 

-  The available consistencies are onValues (default) and onDomains.   

Solver<CP> cp(); 
var<CP>{int} x[1..5](cp,1..6);  
var<CP>{int} n(cp,3..5);  
solve<cp>  
   cp.post(atLeastNValue(x,n));  
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Global Constraints: Sequence 

-  In some applications it is not simply intended to impose cardinality constraints on a 
set of variables, but rather that the variables are considered as a sequence (i.e. an 
array is used to model a sequence rather than a set).  

-  In this case, not only cardinality constraints are imposed on the whole sequence, 
but additionally cardinality constraints are also imposed in specific subsequences. 

Example (Car sequencing): 
 The goal is to manufacture in an assembly line 10 cars with different options (1 to 5) 
shown in the table. Given the assembly conditions of option i, for each sequence of 
ni cars, only mi cars can have that option installed shown in the table.  

option capacity 1 2 3 4 5 6 7 8 9 10 
1   1 / 2 X 
2   2 / 3 
3   1 / 3 X 
4   2 / 5 X X 
5   1 / 5 

Configuration 1 2 3 4 5 6 

cars 

X 

X 

X 

X 

X 

X 

X 
X 
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Global Constraints: Global Sequence 

-  Rather than imposing separate cardinality constraint on the sequence and all the 
relevant subsequences, a specialised global constraint uses an optimised algorithm 
to obtain more pruning than that obtained by separate cardinality constraints. 

-  The sequence constraint has the following format:  

sequence(var<CP>{int}[] x, int[] demand, int p, int q, set{int} V}  

-  It essentially enforces two conditions:  

§  for every value i in the range of the integer array demand, exactly demand[i] 
variables from the array x are assigned to value i;  

§  at most p out of any q consecutive variables in the array x are assigned values 
from the given integer set V  

-  The default consistency level is onDomains but onValues is also available.  



27 October 2015 Constraint Programming 35 

Global Constraints: Global Sequence 

range Cars = 1..10; 
range Configurations = 1..6; 
int demand[Configurations] = [1,1,2,2,2,2]; 
range Options = 1..5; 
int p[Options] = [1,2,1,2,1]; 
int q[Options] = [2,3,3,5,5]; 
set{int} cfs[Options] = [{1,5,6},{3,4,6},{1,5},{1,2,4},{3}]; 
Solver<CP> cp(); 
var<CP>{int} x [Cars](cp, Configurations);  
solve<cp> {  
  forall(o in Options) 
    cp.post(sequence(x, demand, p[o], q[o], cfs[o]); 
}  

option capacity 1 2 3 4 5 6 7 8 9 10 
1   1 / 2 X 
2   2 / 3 
3   1 / 3 X 
4   2 / 5 X X 
5   1 / 5 

Configuration 1 2 3 4 5 6 

cars 

X 

X 

X 

X 

X 

X 

X 
X 
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Other Global Constraints 

-  Many other global constraints have been proposed for specific problems ( a list of 
200 is maintained in the Global Constraint Catalog 

 http://www.emn.fr/x-info/sdemasse/gccat/ 

-  Most modern solvers (SICStus Prolog, GECODE, CHOCO, ZINC, CASPER, ...) include 
implementations of some of these global constraints. For example, the current 
distribution of Zinc /Minizinc (1.6) has implementations of 55 global constraints 

•  alldifferent 
•  alldifferent_except_0 
•  all_disjoint 
•  all_equal 
•  among 
•  at_least (atleast) 
•  at_most (atmost) 
•  at_most1 (atmost1) 
•  bin_packing 
•  bin_packing_capa 
•  bin_packing_load 
•  circuit 
•  count_eq (count) 
•  count_geq 
•  count_gt 
•  count_leq 
•  count_lt 
•  count_neq 
•  cumulative 

•  decreasing 
•  diffn 
•  disjoint 
•  distribute 
•  element 
•  exactly 
•  global_cardinality 
•  global_cardinality_closed 
•  global_cardinality_low_up 
•  global_cardinality_low_up_closed 
•  increasing 
•  int_set_channel 
•  inverse 
•  inverse_set 
•  lex_greater 
•  lex_greatereq 
•  lex_less 
•  lex_lesseq 
•  lex2 

•  link_set_to_booleans 
•  maximum 
•  member 
•  minimum 
•  nvalue 
•  partition_set 
•  range 
•  regular 
•  roots 
•  sliding_sum 
•  sort 
•  strict_lex2 
•  subcircuit 
•  sum_pred (sum) 
•  table 
•  value_precede 
•  value_precede_chain 
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Other Global Constraints 

-  In addition to those already addressed, Comet provides other global constraints: 

•  stretch / regular 
A generalisation of the sequence constraint, that constrain the sequence to have 
long repetition of values or that the sequence satisfies a regular expression. Useful 
for roastering problems that should satisfy “contractual” constraints. 

•  knapsack / multipleKnapsack 
Useful to solve knapsack problems, i.e. to select subsets of objects that do not 
exceed a certain capacity and have a maximum   

•  cumulative 
Useful to solve resource allocation problems with a limited number of resources 
available for a number of tasks, that execute over time periods. 

-  The knapsack constrains will be briefly addressed and a more detailed discussion 
will be done on the cumulative constraints. 
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Knapsack Constraints 

•  binaryKnapsack 

-  The binaryKnapsack is a constraint on the scalar product between a vector of 0-1 
variables and a vector of integers. It can be viewed as the decision on which 
weighted items are placed into a knapsack of variable capacity.  

 

 
 
 
-  Only the onDomains consistency is available. 

•  lightBinaryKnapsack  

-  a weaker but more efficient propagation, (strongly polynomial) than the AC version 
when the capacity is huge.  

Solver<CP> cp();  
int w[1..4] = [1,5,3,5];  
var<CP>{int} x[1..4](cp,0..1);  
var<CP>{int} c(cp,6..7);  
solve<cp> { 
   cp.post(binaryKnapsack(x,w,c));  
} 
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Knapsack Constraints 

•  multiknapsack  

-  A natural generalization of binaryknapsack is the multiknapsack constraint, under 
which a set of weighted items must be placed into several bins:  

 

 

-  A solution satisfying the constraint is x=[1,1,2,3], l=[6,3,5] because 
o  objects 1 and 2, with weights 1 and 5, respectively , are placed into bin 1 

(x[1]=x[2]=1) raising its total load to 6 (l[1]=6) 
o  object 3, with weight 3, is placed into bin 2 (x[3]=2), so that the load of bin 2 

is 3 (l[2]=3)  
o  object 4 is placed into bin 3 (x[4]=3), so that the load of bin 3 is 5 (l[3]=5)  

-  The only consistency level available for the multiknapsack constraint is Auto (not 
easily classifiable). 

Solver<CP> cp();  
int w[1..4] = [1,5,3,5];  
var<CP>{int} x[1..4](cp,0..3);  
var<CP>{int} l[1..3](cp,3..7);  
solve<cp> { 
   cp.post(multiknapsack(x,w,l)); 
}  
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Redundant Constraints 

-  Before addressing the cumulative global constraint we will discuss a simple 
scheduling problem and the pitfalls with reasoning with constraints separately.  

S1/2 

S3/3 S2/4 

S4/1 

Example:  

 A project is composed of the four tasks illustrated in the 
graph, showing precedences between them, as well as 
mutual exclusion (↔). The tasks durations are shown in 
the nodes. 

-  The problem may be modeled by the following 
precedence and disjunctive constraints 

Solver<CP> cp();  
var<CP>{int} s[1..4](cp,0..9);  
int d[1..4] = [2,4,3,1];  
solve<cp> { 
  cp.post(s[2] >= s[1]+d[1]); 
  cp.post(s[3] >= s[1]+d[1]); 
  cp.post(s[4] >= s[2]+d[2]); 
  cp.post(s[4] >= s[3]+d[3]); 
  cp.post(s3 >= s[2]+d[2] || s2 >= s[3]+d[3]); }  
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Redundant Constraints 

-  Because task 1 and both tasks 2 and 3 (as well as task1), must be finished before 
task 4 starts, and because the other tasks have durations 2, 4 and 3 respectively, 
task 4 may only start at time  

   s[4] >= 0+2+3+4 = 9  

 which should fix its value to 9. However, because the disjunction is dealt separately 
from the precedence constraints, the only propagation that is obtained is  

s[4] >= 0+2+4 = 6   and  s[4] >= 0+2+3 = 5  

 and hence the domain of s[4] is narrowed to 6..9 rather than fixed to 9. 

s1/2 

s3/3 s2/4 

s4/1 

  cp.post(s[2] >= s[1]+d[1]); 
  cp.post(s[3] >= s[1]+d[1]); 
  cp.post(s[4] >= s[2]+d[2]); 
  cp.post(s[4] >= s[3]+d[3]);  
  cp.post(s[3] >= s[2]+d[2] || 
          s[2] >= s[3]+d[3]); 
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Redundant Constraints 

-  In general, the interaction of many constraints may not be adequately processed by 
the corresponding propagators. 

-  Whenever the pitfalls of such interaction are identified, one technique that might be 
used is the inclusion of redundant constraints. 

-  Such constraints do not add to the semantics of the programs, i.e. the programs with 
and without them are equivalent. However, they add to the efficiency of constraint 
processing, improving its pruning, and therefore leading to a more efficient search. 

-  In scheduling problems, these redundant constraints, aim at improving the beginning 
and ending of the tasks (edge-finding).Two simple cases are  

-  when k non-ovelapping tasks Xi antecede some task Z the following redundant 
constraint can be added 

sz   >=  min { min(s1), min(s2), ...., min(sk) }  + d1 +d2 + ... + dk 

-  when k non-ovelapping tasks Xi succeed some task Z the folowing redundant 
constraint can be added 

sz + dz  <=  max { max(s1), max(s2), ...., max(sk) }  - d1 -d2 - ... - dk 
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Cumulative Constraints 

-  In general, edge finding requires more sophisticated techniques, namely in problems 
combining scheduling and resource management. 

-  In fact, if many units of a resource are available, then more than one of the tasks that 
use these resources may execute simultaneously. All that is needed is that the 
number of resources required at any given time does not exceed the existing 
resources. 

-  This is the semantics of the cumulative constraint, initially introduced in CHIP, and 
which had an enormous impact in the area of constraint programming. 

-  Let  S be the set of starting times of n tasks si, D be the set of their durations di and 
R the set of the number of resources of a given type required by the tasks, ri. 
Denoting by  

   a = mini(si)      ;    b = maxi(si+di); 
   ri,k = ri    if  si =< tk =< si+di  or    0 otherwise.  

 then    
     cumulative(S,D,R,L)   ⇔  ∀        Σ   ri,k ≤ L 
                   k ∈ [a,b]     i 
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Cumulative Constraints 

-  In Comet the cumulative constraint has the following format:  

cumulative<CP>(int o,int h,int maxCap,var<CP>{int}[] s, 
            var<CP>{int}[] d,var<CP>{int}[] cap) 

-  The arguments of the constraint can be interpreted as  
•  int o: origin of time period 
•  int h: horizon of time period 
•  int maxCap: maximum capacity 
•  var<CP>{int}[] s: start variables 
•  var<CP>{int}[] d: duration variables 
•  var<CP>{int}[] cap: capacity requirement 

-  As explained It essentially enforces the following conditions (where R is the range 
of the arrays s, d and cap):  

-  For each I in R,  s[i] >= o and s[i] + d[i] <= h.  
-  For each t in [o,h],  sum(i  in R:  s[i] <= t < s[i] + d[i]) cap[i] <= maxCap. 
-  For each t in [o,h],  sum(i  in R:  s[i] <= t < s[i] + d[i]) cap[i] <= maxCap. 
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Cumulative Constraints 

Example:  

 Take 7 tasks (A a G) with the duration and resource consumption (e.g. number of 
workers needed to carry them out) specified in the following arrays 

d = [ 2 , 4 , 3 , 2 , 1 , 2 , 2 ]      ;     c = [4 , 1 , 3 , 1 , 2 , 3 , 2 ] 

 Graphically, the tasks can be viewed as 

 

Goal: Assuming there are Rmax resources (e.g. workers) available at all times  

 (Sat) Find whether the tasks may all be finished in a given due time Tmax; 

 (Opt) Find the minimum due time Tmax (make span) 

Many instances of the problem may be modelled by a simple constraint 

   cumulative<CP>(0,H,M,s,d,c) 

plus some additional constraints regarding the domains of the starting time variables. 
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Cumulative Constraints 

Some Instances:  cumulative<CP>(O,H,M,s,d,c) 

-  With M = 4  (4 resource units available) and imposing that all tasks start no earlier 
than 0 (O = 0) and finish no later than time 9 (H = 9+1)  a number of answers are 
obtained, (allowing one of the 6 workers to rest for one hour) namely 

4

3

2

1

1 2 3 4 5 6 7 8 9

8 1 3 5 7 1 6

R 

t 

1 3 3 7 9 6 8

6 1 1 8 5 8 4
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Cumulative Constraints 

Some Instances:  

-  With M = 6  (6 resource units available) and imposing that all tasks are finished at 
time 6 (H = 6+1) a number of answers are still obtained, (allowing no rest for the 
workers) 

1 1 3 3 5 6 6 4 4 1 6 3 6 1
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Cumulative Constraints 

-  In some applications, tasks are flexible, in the sense that time may be traded for 
resources. 

-  For example, a flexible task might require either 2 workers working for 3 hours, or 3 
workers working for 2 hours. It may even be executed by a single worker during 6 
hours, or by 6 workers in 1 hour. 

-  Flexible tasks may be more easily accomodated within the resources (and time) 
available.  

-  Scheduling of this type of tasks may be specified as before.  

-  However, whereas in the previous case, the durations d and resources c used by 
each task i were constants, now they are variables a and b constrained by 

cp.post(s[i] * d[i] = a[i] * b[i])  
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Cumulative Constraints 

Results 

 With H = 5+1 and M = 7 (previously impossible) there are now several solutions. 
(Notice the “deeper” transformation in task 2, from (4*1 ⇒ 2*2), in addition to a 
“rotation”). 

 

 

T 2 4 3 1 1 2 2
R 4 1 3 2 2 3 2
S 4 2 1 1 1 2 4

T 2 2 3 1 1 2 2
R 4 2 3 2 2 3 2
S 1 4 1 5 3 4 3
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Cumulative Constraints: Job Shop 

-  The job shop problem consists of executing the different tasks of several jobs without 
exceeding the available resources. 

-  Within each job, there are several tasks, each with a duration. Within each job, the 
tasks have to be performed in sequence, possibly respecting mandatory delays 
between the end of a task and the start of the following task. 

-  Tasks of different jobs are independent, except for the sharing of common resources 
(e.g. machines). Each task must be executed in one machine of a certain type. The 
number of machines of each type is limited. 

-  A simple instance of the problem (with 2 machines) is given in the table below (with 
the corresponding graphic representation). 

 

J1

J2

J3

J4

1 2 3

1 2 3

1 2 3

1 2 3
Z, D 1 2 3

1 1 , 2 2 , 4 1 , 7
2 1 , 3 2 , 4 1 , 5
3 1 , 5 2 , 3 2 , 3
4 1 , 3 2 , 3 2 , 4

J
o
b
s
X

Tasks Y
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Cumulative Constraints: Job Shop 

-  This instance was proposed in the book Industrial Scheduling [MuTh63]. For 20 
years no solution was found that optimised the “makespan”, i.e. the fastest 
termination of all tasks. 

-  Around 1980, the best solution was 935 (time units). In 1985, the optimum was 
lower bounded to 930. In 1987 the problem was solved with a highly specialised 
algorithm, that found a solution with makespan 930. 

-  With the cumulative/4 constraint, in the early 1990’s, the problem was solved in 
1506 seconds (in a SUN/SPARC workstation). 

 
Z, D 1 2 3 4 5 6 7 8 9 a

1 1, 29 2, 78 3,   9 4, 36 5, 49 6, 11 7, 62 8, 56 9, 44 a, 21
2 1, 43 3, 90 5, 75 a, 11 4, 69 2, 28 7, 46 6, 46 8, 72 9, 30
3 2, 91 1, 85 4, 39 3, 74 9, 90 6, 10 8, 12 7, 89 a, 45 5, 33
4 2, 81 3, 95 1, 71 5, 99 7,   9 9, 52 8, 85 4, 98 a, 22 6, 43
5 3, 14 1,   6 2, 22 6, 61 4, 26 5, 69 9, 21 8, 49 a, 72 7, 53
6 3, 84 2,   2 6, 52 4, 95 9, 48 a, 72 1, 47 7, 65 5,   6 8, 25
7 2, 46 1, 37 4, 61 3, 13 7, 32 6, 21 a, 32 9, 89 8, 30 5, 55
8 3, 31 1, 86 2, 46 6, 74 5, 32 7, 88 9, 19 a, 48 8, 36 4, 79
9 1, 76 2, 69 4, 76 6, 51 3, 85 a, 11 7, 40 8, 89 5, 26 9, 74
a 2, 85 1, 13 3, 61 7,   7 9, 64 a, 76 6, 47 4, 52 5, 90 8, 45

Tasks Y

J
o
b
s
 
X



27 October 2015 Constraint Programming 52 

Placement Problems 

-  Several applications of great (economic) importance require the satisfaction of 
placement constraints, i.e. the determination of where to place a number of 
components in a given space, without overlaps. 

Some of these applications include: 

-  Wood boards cuttings: a number of smaller pieces should be cut from large boards: 

-  Placement of items into a large container. 

In the first 2 problems the space to consider is 2D, whereas the third problem 
is a typical 3D application. We will focus on 2D problems. 

 

-  An immediate parallelism can be drawn between these 2D problems and 
those of scheduling, if the following correspondences are made: 

-  Time  ↔    the X dimension; 

-  Resources  ↔    the Y dimension; 

-  A task duration  ↔    the item X size (width); 

-  A task resource   ↔    the item Y size (height). 
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Placement Problems 

Example:  

Find the appropriate cuts to be made on a wood board of dimensions W * H so as 
to obtain 11 rectangular pieces (A a K). 

 The various pieces to obtain have the following dimensions (width-w and height-h) 

 w = [ 1, 2, 1, 3, 1, 2, 4, 5, 2, 3, 3] 
h  = [ 2, 1, 3, 1, 4, 2, 1, 1, 3, 2, 3] 

 Graphically 

 

 

 

 

 and the constraint used, adapting durations to widths and resources to heights is 

cumulative<CP>(1,W+1,H,x,w,h) 
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Placement Problems 

-  Unfortunately, the results obtained have not a direct reading. For example, one of 
the solutions obtained with an 8*6 rectangle is 

x = [ 6, 7, 5, 1, 4, 5, 1, 1, 7, 6, 1] 

 That can be read as (???)                                  or as 

 

 

 

D

B

K
A

C
E F

G

H

I
J

D

G

I

BC
A

J
H

E

F
K
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Placement Problems 

-  To avoid this ambiguity, one should explicitely compute, not only the X-origin of the 
rectangles, but also its Y-origin. 

-  Such computation can easily be made, taking into account that all that is needed is 
considering a rotation of 90º in the viewing perspective, changing the X with the Y 
axes. 

-  Hence, all that is required is a “duplication” of the previous program, considering not 
only X variables, but also Y variables for explicit control over the Y-origins of the 
rectangles. 

cumulative<CP>(1,W+1,H,x,w,h) 
cumulative<CP>(1,H+1,W,y,h,w) 

  where 
 w = [1,2,1,3,1,2,4,5,2,3,3]  
h = [2,1,3,1,4,2,1,1,3,2,3] 

D

B

K
A

C
E F

G

H

I
J
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Placement Problems 

-  Yet, the results still aren’t what they should be. For example, the first solution 
obtained is 

x-y = [7-4,6-2,5-1,1-5,4-1,5-4,1-1,1-6,7-1,6-5,1-2] 

   corresponding to         

 

 

 

 
-  Analysing the problem, it becomes clear that its cause is the fact that no non-

overlaping constraint was imposed on the rectangles! 

D

B

K
A

C
E F

G

H

I
J

????? 
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Placement Problems 

-  Several applications of great (economic) importance require the satisfaction of 
placement constraints, i.e. the determination of where to place a number of 
components in a given space, without overlaps. 

-  The non overlapping of the rectangles defined by their x and y origins and their 
widths w (x-sizes) and heights h (y-sizes) is guaranteed, as long as one of the 
constraints below is satisfied (for rectangles i and j) 

  x[i]+w[i] <= x[j]  rectangle i is  left of  rectangle j 
  x[j]+w[j] <= x[i]  rectangle i is  rigth of  rectangle j 

  y[i]+h[i] <= y[j]  rectangle i is  below  rectangle j 

  y[j]+h[j] <= y[i]  rectangle i is  above  rectangle j 

 

-  As explained before, rather than commiting to one of these conditions, and change 
the commitment by backtracking, a better option is to adopt a least commitment 
approach, for implementing such disjunctive constraint. 
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Placement Problems 

 

Important points to stress 

-  The enumeration should be made jointly on both the Xi and the Yj, hence their 
merging into a single list Z. 

-  Several heuristics could possibly be used for variable enumeration. The heuristic 
chosen, ffc, is the classical choice. 

-  Alternatively, one could possibly start placing the “largest” rectangles in the 
corners, so as to make room for the others. 

-  The cumulative constraints are not strictly necessary, given the overlapping and 
the maximum constraints applied in both dimensions. 

-  Yet, they are extremely useful. Without them, the program would “hardly” work! 
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Placement Problems 

-  The cumulative constraints are not strictly necessary, given the overlapping and 
the maximum constraints applied in both dimensions. 

-  Nevertheless, the results below show that the use of redundant cumulative 
constraints, may speed up execution very significantly. 
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Speedup  

Run time : > 1000 

Backtracks: > 10000  
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