
27 October 2015 Constraint Programming 1

Search and Optimisation

-  An overview

• Global Constraints

• Domain-consistency and specialised propagation

• Global Constraints in COMET

• Redundant Constraints

27 October 2015 Constraint Programming 2

Types of Constraints

-  So far, most of the constraints we have been dealing with are arithmetic and logical
constraints, using the binary operators

+ (addition)
- (subtraction)
* (multiplication)
/ (integer division)
% (modulo)
== (equality):

Sums and multiplications can be specified on an arbitrary number of operands (i.e.
s = Σ i∈[1..k] xi and p = Π i∈[1..k] xi) by means of the sum and prod aggregate
operators (and also min and max). Other more complex constraints can be formed
by logically combining these constraints with the operators

! (negation),
&& (and),
|| (or),
== (equality),
=> implication)

27 October 2015 Constraint Programming 3

Global Constraints: Table

-  However, arbitrary constraints on an arbitrary number of variables might be not
easily formed in this way. In some cases, the most convenient specification is by
explicit enumeration of the accepted tuples.

-  The table constraint is an example of a constraint given in extension. It constrains
three variables (x[1], x[2], x[3]) to take values according to one of the enumerated
triples contained in the Table<CP> object given as its parameter.

-  The only available consistency is onDomains (generalised arc-consistency).

int possibleTriples [1..4,1..3] =
 [[2,4,2], [5,1,6], [2,1,7], [2,3,3]];

var<CP>{int} x[1..3](cp,1..5);
solve<cp> {
 Table<CP> t(all(i in 1..4) possibleTriples[i,1],

 all(i in 1..4) possibleTriples[i,2],
 all(i in 1..4) possibleTriples[i,3]);

cp.post(table(x[1],x[2],x[3],t));
}

27 October 2015 Constraint Programming 4

Global Constraints

-  Even when complex constraints can be formed by some form of aggregation of
individual constraints (possibly through reification) it is often important to specify
these aggregations as a single n-ary “global” constraint, for at least two reasons

-  Simpler modelling of a problem

-  Exploitation of specialised algorithms to achieve better propagation

-  The following, very common example, clarifies these issues:

 The set of n variables { X1 ... Xn } must all take different values.

-  This problem can be modelled either as

§  A set of nC2 constraints of difference Xi ≠ Xj (1 ≤ i < j ≤ n)

§  A single all-different({ X1 ... Xn }) global constraint.

-  Of course, the second option is simpler, but should be more than syntactic sugar
and allow a better pruning.

27 October 2015 Constraint Programming 5

Global Constraints: allDifferent

Example:

-  Clearly, the decomposition of the global constraints into binary difference constraints
does not lead to any pruning of the domain of the variables.

-  Nevertheless, from the “pigeon hole” principle, it is easy to see that …
variables X1, X5 and X8 take values 1, 2 and 3 among themselves (3 pigeons
for 3 holes), values that can be pruned from the domain of the other variables.

-  But then, for similar reasons, variables X4, X4 and X9 take values 4, 5 and 6, that
are pruned from the domain of the other variables. The following pruning should
then be “easily” achieved

 X1: 1,2,3 X2: 1,2,3,4,5,6 X3: 1,2,3,4,5,6,7,8,9
 X4: 1,2,3,4,5,6 X5: 1,2,3 X6: 1,2,3,4,5,6,7,8,9
 X7: 1,2,3,4,5,6,7,8,9 X8: 1,2,3 X9: 1,2,3,4,5,6

 X1: 1,2,3 X2: 1,2,3,4,5,6 X3: 1,2,3,4,5,6,7,8,9
 X4: 1,2,3,4,5,6 X5: 1,2,3 X6: 1,2,3,4,5,6,7,8,9
 X7: 1,2,3,4,5,6,7,8,9 X8: 1,2,3 X9: 1,2,3,4,5,6

27 October 2015 Constraint Programming 6

Global Constraints: allDifferent

-  Only a few values (in green)
are obtained by naïve all_diff.

the indices show a possible order in
which the cuts are made

-  Global all_diff performs much
more pruning and fixes some
variables without backtracking.

-  In particular, values may be
obtained by application of the
“pigeon-hole” principle.

The first cuts are illustrated in the
figure.

 8 4 3 5
 1 8
 3 9 8 6
2 9 7
 9 6 1
 5 1 3
6 1 2 4
 4 6
 8 9 5 6

67

18

42

71

93

45

64

26

A more realistic example: SUDOKU

3479

3479

3479

25810

25810

25810

377

377

-  More general domain pruning is also obtained in this way, that will eventually lead
to complete solving of this board without any backtracking

27 October 2015 Constraint Programming 7

Global Constraints: allDifferent

-  How easily can such pruning be achieved?

-  Given the widespread use of this and other global constraints, specialised
algorithms aim at achieving a pruning close to generalised arc-consistency, at some
low cost (recall that a naïve adaptation of AC-3 to GAC-3 would lead to a worst case
complexity of O(n4 dk+1), clearly too costly to be of any use).

-  The algorithm outlined next, maintains generalised arc-consistency, in a network of
n variables. The algorithm (see [Regi94]), is grounded on graph theory, and uses
the notion of bipartite graph matching.

-  To begin with, a bipartite graph is associated to each all-different constraint. In
such graph,
§  there are nodes of two sorts: one representing variables and the other

representing values; and
§  The only arcs in the graph (bipartite) connect variables and values nodes:

there is an arc between a variable node and a value node iff this value is in
the domain of the variable

27 October 2015 Constraint Programming 8

Global Constraints: allDifferent

-  In polinomial time, it is possible to eliminate, from the graph, all arcs that do not
correspond to possible assignments of the variables.

Key Ideas:

-  A matching, corresponds to a subset of arcs that link some variable nodes to value
nodes, different variables being connected to different values.

-  A maximal matching is a matching that includes all the variable nodes.

-  Any solution of the all_diff constraint corresponds to one and only one maximal
matching.

A
B
C
D
E

1
2
3
4
5
6

A = 1

B = 2

C = 3

D = 4

E = 5

Maximal Matching

A in 1..2, B in 1..2, C in 1..3, D in 2..5, E in 3..6

27 October 2015 Constraint Programming 9

Global Constraints: allDifferent

-  The propagation (domain filtering) is done according to the following principles:

1. If an arc does not belong to any maximal matching, then it does not belong to
any all_diff solution.

2. Once determined some maximal matching, it is possible to determine whether
an arc belongs or not to any maximal matching.

3. This is because, given a maximal matching, an arc belongs to any maximal
matching iff it belongs:

a) To an alternating cycle; or

b) To an even alternating path, starting at a free node.

27 October 2015 Constraint Programming 10

Global Constraints: allDifferent

Example:

-  6 is a free node;

•  6-E-5-D-4 is an even alternating path, alternating arcs included in the MM (E-5, D-4)
and excluded (D-5, E-6);

•  A-1-B-2-A is an alternating cycle;

•  E-3 does not belong to any alternating cycle

•  E-3 does not belong to any even alternating path starting in a free node (6)

•  E-3 may be filtered out!

 Elimination of other arcs
by similar reasoning
leads to the pruned
bipartite graph

A

B

C

D

E

1

2

3

4

5

6

A

B

C

D

E

1

2

3

4

5

6

27 October 2015 Constraint Programming 11

Global Constraints: allDifferent

-  Upon elimination of some labels (arcs), possibly due to other constraints, the
all_diff constraint propagates such pruning, incrementally.

There are 3 situations to consider:

1. Elimination of a vital arc (the only arc connecting a variable node with a value
node):

o  The constraint cannot be satisfied.

A

B

C

D

E

1

2

3

4

5

6

?

A

B

C

D

E

1

2

3

4

5

6

27 October 2015 Constraint Programming 12

Global Constraints: allDifferent

2.  Elimination of a non-vital arc which is a member to the maximal matching

§  Determine a new maximal matching and restart from there.
§  A new maximal matching includes arcs D-5 and E-6. In this matching,

arcs E-4 and E-5 do not belong to even alternating paths or alternating
cycle and should be pruned

A

B

C

D

E

1

2

3

4

5

6

A

B

C

D

E

1

2

3

4

5

6

3.  Elimination of a non-vital arc which is not a member to the maximal
matching

§  Eliminate the arcs not belonging anymore to an alternating cycle or path.
§  Arc E-4 was only kept because of the even alternating path 6-E-5-D-4-A.

Once arc E-6 disappears, so does arc E-4.

A

B

C

D

E

1

2

3

4

5

6

27 October 2015 Constraint Programming 13

Global Constraints: allDifferent

A

B

C

D

E

1

2

3

4

5

6

27 October 2015 Constraint Programming 14

Global Constraints: allDifferent

Time Complexity: O(dn3/2).

 Assuming n variables, each of which with d values, and where D is the cardinality of
the union of all domains,

1. It is possible to obtain a maximal matching with an algorithm of time complexity
O(dn3/2).

2. Arcs that do not belong to any maximal matching may be removed with time
complexity O(dn+n+D).

3. Taking into account these results, we obtain complexity of O(dn+n+D+dn3/2). Since
D < dn, the total time complexity of the algorithm is dominated by the last term.

Alternatives:

-  Other specialised algorithms exist for this constraint, trading efficiency for pruning
power. In particular, simpler algorithms exist that only impose bounds consistency on
the variables.

27 October 2015 Constraint Programming 15

Global Constraints: allDifferent

-  The alldifferent function allows to state that each variable in an array of CP variables
takes a different value.

-  The available consistency levels are onValues(default) and onDomains (the first
corresponds to the naïf implementation).

-  The effect of the different consistency levels can be observed in the sudoku
program applied to the data file presented as auxiliary to these slides.

Solver<CP> cp();
var<CP>{int} x[1..5](cp,1..6);
solve<cp> {
 cp.post(alldifferent(x), onDomains);
}

27 October 2015 Constraint Programming 16

Global Constraints: allDifferent

Alternatives:

-  Puget designed the first bounds consistency algorithm for all-different, which is
based on Hall’s theorem and runs in O(n log n) time.

-  Mehlhorn and Thiel later showed that since the matching and SCC computations of
Régin’s algorithm can be performed faster on convex graphs compared to general
graphs, it is possible to achieve bounds consistency for all-different using the
matching approach in O(n + n’) time, where n’ is the cardinality of D, plus the time
required to sort the variables according to the endpoints of their domains.

-  All-different is a special case of generalised cardinality constraint (gcc). Quimper et
al. [54] discovered an alternative bounds consistency algorithm for gcc, based on the
Hall interval approach, that only narrows the domains of the assignment variables.
The “previous” algorithm, cf. later, narrows the domains of the assignment variables
as well as the count variables, to bound consistency.

-  See more in chapter 6 of the Handbook of Contraint Programming, F.Rossi and P.
van Beek and T. Walsh, eds., Elsevier, 2006.

17

Global Constraints: Circuit

-  The previous global constraints may be regarded as imposing a certain
“permutation” on the variables.

-  In many problems, such permutation is not a sufficient constraint. It is
necessary to impose a certain “ordering” of the variables.

-  A typical situation occurs when there is a sequencing of tasks, with
precedences between tasks, possibly with non-adjacency constraints between
some of them.

-  In these situations, in addition to the permutation of the variables, one must
ensure that the ordering of the tasks makes a single cycle, i.e. there must be
no sub-cycles.

27 October 2015 Constraint Programming

18

Global Constraints: Circuit

-  These problems may be described by means of directed graphs, whose nodes
represent tasks and the directed arcs represent precedences.

-  The arcs may even be labelled by “features” of the transitions, namely their
costs.

-  This is a situation typical of several TSP-like problems (Traveling Salesman).

27 October 2015 Constraint Programming

1 2

3 4

1 2

3 4

5

3

4 5 6

9

8

7

9

2

2

19

Global Constraints: Circuit

-  Filtering: For these type of problems, the arcs that do not belong to any
hamiltonian circuit should be eliminated.

-  In the graph, it is easy to check that the only possible circuits are
§  1 → 2 → 4 → 3 → 1 ;
§  1 → 3 → 4 → 2 → 1

-  Certain arcs (e.g. All unary such as 2 → 2, as well as some binary, e.g. 2 → 3),
do not belong to any hamiltonian circuit and can (should !) be safely pruned.

27 October 2015 Constraint Programming

1 2

3 4

1 2

3 4

27 October 2015 Constraint Programming 20

Global Constraints: Circuit

-  The pruning of the arcs that do not belong to any circuit is the goal of the global
constraint circuit.

-  The circuit constraint states that an array of variables has to represent a
Hamiltonian circuit in a directed graph. Assume a weighted directed graph G = (V,
E), where (the third element of the E tuples is the weight or cost)

•  V = {1,2,3,4}

•  E = {(1,2,5),(1,3,9),(2,1,3),(2,2,2),(2,3,5),(2,4,8),(3,1,4),(3,3,2),(3,4,7),(4,2,6),(4,3,9)

-  Representing the graph by the successor array of variables x, the circuit constraint
forces x to represent an Hamiltonian circuit on G.

1 2

3 4

1 2

3 4

5

3

4 5 6

9

8

7

9

2

2

27 October 2015 Constraint Programming 21

Global Constraints: Circuit

-  The circuit constraint states that an array of variables has to represent a
Hamiltonian circuit in a directed graph, adopting a representation of a graph by an
array of successor nodes.

import cotfd;
range Nodes = 1..4;
set{int} succ[Nodes] =
 [{2,3},{1,2,3,4},{1,3,4},{2,3,4}];
Solver<CP> cp();
var<CP>{int} x [s in Nodes](cp,succ[s]);

solveall<cp> {
 cp.post(circuit(x));
} using {
 labelFF(x);
 cout << x << endl;
}

1 2

3 4

27 October 2015 Constraint Programming 22

Global Constraints: Element

-  The minimization of the cost of a circuit (e.g. the TSP: Travelling Salesman
problem) can be obtained with the application of the Circuit and the Element
constraints.

-  The Element (or indexing) constraint allows to index an array of integers or
variables by indices that are variables themselves. In the following example, array
a is indexed by variable x to be linked with variable y.

-  The available consistency levels are onBounds(default) and onDomains.

-  In the latter case the domain of x is pruned to {3,4,7} and the domain of y to {4,6}.

Solver<CP> cp();
int a[1..7] = [9,3,4,6,2,7,4];
var<CP>{int} x(cp,1..7);
var<CP>{int} y(cp,{1,4,6});
solve<cp> {
 cp.post(a[x] == y, onDomains); }
} ...

-  The combination of Circuit and Element is shown below to solve the TSP.

27 October 2015 Constraint Programming 23

Global Constraints: Circuit+Element

import cotfd;
range Nodes = 1..4;
set{int} succ[Nodes] =
 [{2,3},{1,2,3,4},{1,3,4},{2,3,4}];
Solver<CP> cp();
var<CP>{int} x [s in Nodes](cp,succ[s]);
var<CP>{int} cc(cp,0..100);
int costs[Nodes,Nodes] =
 [[0,5,9,0],
 [3,2,5,8],
 [4,0,2,7],
 [0,6,9,0]];
minimize<cp> cc subject to {
 cp.post(cc == sum(i in Nodes)
 costs[i, x[i]]);
 cp.post(circuit(x));
} using
 labelFF(x);

1 2

3 4

5

3

4 5 6

9

8

7

9

2

2

27 October 2015 Constraint Programming 24

Global Constraints: minCircuit

-  In fact, the minCircuit<CP> constraint is equivalent to the combination of the circuit
and Element constraints (but more efficent !) :

import cotfd;
range Nodes = 1..4;
set{int} succ[Nodes] =
 [{2,3},{1,2,3,4},{1,3,4},{2,3,4}];
Solver<CP> cp();
var<CP>{int} x [s in Nodes](cp,succ[s]);
var<CP>{int} cc(cp,0..100);
int costs[Nodes,Nodes] =
 [[0,5,9,0],
 [3,2,5,8],
 [4,0,2,7],
 [0,6,9,0]];
minimize<cp> cc subject to
 cp.post(minCircuit<CP>(x, costs, cc));
using
 labelFF(x);

1 2

3 4

5

3

4 5 6

9

8

7

9

2

2

27 October 2015 Constraint Programming 25

Global Constraints: Global Cardinality

-  Many scheduling and timetabling problems, have quantitative requirements such as

 in these n “slots” m must have value v

-  This type of requirements must be modelled by cardinality constraints, that count
the number of occurrences of value v in a solution of the problem.

-  Typically slots may be represented by an array of FD variables and for all values
some bounds on the cardinality are imposed.

-  For example, to guarantee that all values v in some domain Dom (1..3) appears at
least twice in an array x with 8 elements, the following constraint can be used

Range Rng = 1..8;
Range Dom = 1..3;
var<CP>{int} x[Rng](cp,Dom);
...
forall(v in Dom)
 cp.post ((sum(i in Rng) (x[i] == v)) >= 2);
...

27 October 2015 Constraint Programming 26

Global Cardinality Constraints

-  Imposing lower and upper bounds on the ocurrence of values in a solution may be
imposed by atleast/atmost constraints.

-  The atleast/atmost constraints guarantee a lower/upper bound on the number of
occurrences of each value in an array of variables. The available consistencies are
onValues (default) and onDomains.

-  In the example below, the value 1 must appear 0 times, the values 2 at least 2
times, the value 3 at least 1 time, and so on:

-  where the atleast constraint is equivalent to

Solver<CP> cp();
int low[1..5] = [0,2,1,3,0];
var<CP>{int} x[1..6](cp,1..5);
solve<cp>
 cp.post(atleast(low,x));

forall(v in 1..5)
 cp.post ((sum(i in 1..6) x[i] == v) <= low[v])

27 October 2015 Constraint Programming 27

Global Cardinality Constraints

-  Sometimes, a problem might require that a solution has exact number of
occurrences of the values in a solution. Such requirement might be specified with a
combination of atleast/atmost constraints sharing the same bounds, as in

-  The same effect can be obtained with the exact constraint, as shown below.

-  The available consistencies are onValues (default) and onDomains.

Solver<CP> cp();
int occ[1..5] = [1,2,1,3,2];
var<CP>{int} x[1..9](cp,1..5);
solve<cp>{
 cp.post(atleast(occ,x)); cp.post(atmost(occ,x)); }

Solver<CP> cp();
int occ[1..5] = [1,2,1,3,2];
var<CP>{int} x[1..9](cp,1..5);
solve<cp>{
 cp.post(exactly(occ,x));

27 October 2015 Constraint Programming 28

Global Cardinality Constraints

-  Many problems may require different bounds on the number of occurrences, e.g.
-  Lower bounds to guarantee that resources are used; and
-  Upper bounds to guarantee that capacities are not exceeded.

-  For example, assume a team of 7 people (nurses) where one or two must be
assigned the morning shift (m), one or two the afternoon shift (a), one the night shift
(n), while the others may be on holliday (h) or stay in reserve (r).

-  Again this problem can be modelled with combined atleast/atmost constraints:

range Workers = 1..7;
enum Shifts = {m,a,n,h,r};
set{Shifts} dom[Workers] =
 [{m,a},{m,a},{m,a},{m,a},{m,a,n},{a,n,h,r},{n,r}];
int lower[Shifts] = [1,1,1,0,0];
int upper[Shifts] = [2,2,1,5,5];
Solver<CP> cp();
var<CP>{int} w [i in Workers](cp,dom[i]);
solve<cp> {
 cp.post(atleast(lower,w)); cp.post(atmost(upper,w));
}

27 October 2015 Constraint Programming 29

Global Cardinality Constraints

-  Nevertheless, the separate, or local, handling of each of these constraints, does
not detect all the pruning opportunities for the variables domains, as can be seen
in the problem described.

1,2,3,4::{m,a}, 5::{m,a,n}, 6::{a,n,h,r}, 7::{n,r}

-  The workers and their domains can be represented by the following graph, where
the pairs in the values represent the lower and upper bounds in a solution.

m (1,2)

6

4
5

1

2

3

7

a (1,2)

n (1,1)

h (0,2)

r (0,2)

27 October 2015 Constraint Programming 30

Global Cardinality Constraints

-  Workers 1, 2, 3 and 4 may only take values m and a. Since these may only be
attributed to 4 people, no one else, namely 5 or 6, may take these values m and a.

-  Now worker 5 may now only take value n. Since this must be taken by a single
person, no one else (e.g. 6 or 7) may take value n.

m (1,2)

6

4

5

1

2

3

7

a (1,2)

n (1,1)

h (0,2)

r (0,2)

m (1,2)

F

D

E

A

B

C

G

a(1,2)

n (1,1)

h (0,2)

r (0,2)

27 October 2015 Constraint Programming 31

Global Cardinality Constraints

-  This filtering, that could not be found in each constraint alone, can be obtained
with an algorithm that uses analogy with results in maximum network flows.

-  Such filtering is obtained in the global cardinality constraint, that combines the
atleast and atmost constraint but explores a different propagation algorithm, based
on maximal flows in graphs.

m (1,2)

6

4

5

1

2

3

7

a (1,2)

n (1,1)

h (0,2)

r (0,2)

range Workers = 1..7;
enum Shifts = {m,a,n,h,r};
set{Shifts} dom[Workers] = [{m,a},{m,a},
{m,a},{m,a},{m,a,n},{a,n,h,r},{n,r}];
int lower[Shifts] = [1,1,1,0,0];
int upper[Shifts] = [2,2,1,5,5];
Solver<CP> cp();
var<CP>{int} w [i in Workers](cp,dom[i]);
solve<cp> {
 cp.post(cardinality(lower, w, upper));
 // cp.post(atleast(lower, w));
 // cp.post(atmost(upper, w));
}

27 October 2015 Constraint Programming 32

Global Cardinality: NValue

-  Sometimes there are no constraints over number of occurrences of specific
values in a solution, but rather on the number of different values occurring in a
solution (whatever the values may be).

-  The atLeastNValue global constraint is a soft version of the alldifferent. It counts
the number of different values in a vector of variables.

-  The constraint maintains that the variable numberOfValues is the number of
different values taken by the variables in the array x. In the example below the
number of different values x[i] for the 5 variables should be between 3 and 5 (in
the last case this corresponds to an all_different).

-  The available consistencies are onValues (default) and onDomains.

Solver<CP> cp();
var<CP>{int} x[1..5](cp,1..6);
var<CP>{int} n(cp,3..5);
solve<cp>
 cp.post(atLeastNValue(x,n));

27 October 2015 Constraint Programming 33

Global Constraints: Sequence

-  In some applications it is not simply intended to impose cardinality constraints on a
set of variables, but rather that the variables are considered as a sequence (i.e. an
array is used to model a sequence rather than a set).

-  In this case, not only cardinality constraints are imposed on the whole sequence,
but additionally cardinality constraints are also imposed in specific subsequences.

Example (Car sequencing):
 The goal is to manufacture in an assembly line 10 cars with different options (1 to 5)
shown in the table. Given the assembly conditions of option i, for each sequence of
ni cars, only mi cars can have that option installed shown in the table.

option capacity 1 2 3 4 5 6 7 8 9 10
1 1 / 2 X
2 2 / 3
3 1 / 3 X
4 2 / 5 X X
5 1 / 5

Configuration 1 2 3 4 5 6

cars

X

X

X

X

X

X

X
X

27 October 2015 Constraint Programming 34

Global Constraints: Global Sequence

-  Rather than imposing separate cardinality constraint on the sequence and all the
relevant subsequences, a specialised global constraint uses an optimised algorithm
to obtain more pruning than that obtained by separate cardinality constraints.

-  The sequence constraint has the following format:

sequence(var<CP>{int}[] x, int[] demand, int p, int q, set{int} V}

-  It essentially enforces two conditions:

§  for every value i in the range of the integer array demand, exactly demand[i]
variables from the array x are assigned to value i;

§  at most p out of any q consecutive variables in the array x are assigned values
from the given integer set V

-  The default consistency level is onDomains but onValues is also available.

27 October 2015 Constraint Programming 35

Global Constraints: Global Sequence

range Cars = 1..10;
range Configurations = 1..6;
int demand[Configurations] = [1,1,2,2,2,2];
range Options = 1..5;
int p[Options] = [1,2,1,2,1];
int q[Options] = [2,3,3,5,5];
set{int} cfs[Options] = [{1,5,6},{3,4,6},{1,5},{1,2,4},{3}];
Solver<CP> cp();
var<CP>{int} x [Cars](cp, Configurations);
solve<cp> {
 forall(o in Options)
 cp.post(sequence(x, demand, p[o], q[o], cfs[o]);
}

option capacity 1 2 3 4 5 6 7 8 9 10
1 1 / 2 X
2 2 / 3
3 1 / 3 X
4 2 / 5 X X
5 1 / 5

Configuration 1 2 3 4 5 6

cars

X

X

X

X

X

X

X
X

27 October 2015 Constraint Programming 36

Other Global Constraints

-  Many other global constraints have been proposed for specific problems (a list of
200 is maintained in the Global Constraint Catalog

 http://www.emn.fr/x-info/sdemasse/gccat/

-  Most modern solvers (SICStus Prolog, GECODE, CHOCO, ZINC, CASPER, ...) include
implementations of some of these global constraints. For example, the current
distribution of Zinc /Minizinc (1.6) has implementations of 55 global constraints

•  alldifferent
•  alldifferent_except_0
•  all_disjoint
•  all_equal
•  among
•  at_least (atleast)
•  at_most (atmost)
•  at_most1 (atmost1)
•  bin_packing
•  bin_packing_capa
•  bin_packing_load
•  circuit
•  count_eq (count)
•  count_geq
•  count_gt
•  count_leq
•  count_lt
•  count_neq
•  cumulative

•  decreasing
•  diffn
•  disjoint
•  distribute
•  element
•  exactly
•  global_cardinality
•  global_cardinality_closed
•  global_cardinality_low_up
•  global_cardinality_low_up_closed
•  increasing
•  int_set_channel
•  inverse
•  inverse_set
•  lex_greater
•  lex_greatereq
•  lex_less
•  lex_lesseq
•  lex2

•  link_set_to_booleans
•  maximum
•  member
•  minimum
•  nvalue
•  partition_set
•  range
•  regular
•  roots
•  sliding_sum
•  sort
•  strict_lex2
•  subcircuit
•  sum_pred (sum)
•  table
•  value_precede
•  value_precede_chain

27 October 2015 Constraint Programming 37

Other Global Constraints

-  In addition to those already addressed, Comet provides other global constraints:

•  stretch / regular
A generalisation of the sequence constraint, that constrain the sequence to have
long repetition of values or that the sequence satisfies a regular expression. Useful
for roastering problems that should satisfy “contractual” constraints.

•  knapsack / multipleKnapsack
Useful to solve knapsack problems, i.e. to select subsets of objects that do not
exceed a certain capacity and have a maximum

•  cumulative
Useful to solve resource allocation problems with a limited number of resources
available for a number of tasks, that execute over time periods.

-  The knapsack constrains will be briefly addressed and a more detailed discussion
will be done on the cumulative constraints.

27 October 2015 Constraint Programming 38

Knapsack Constraints

•  binaryKnapsack

-  The binaryKnapsack is a constraint on the scalar product between a vector of 0-1
variables and a vector of integers. It can be viewed as the decision on which
weighted items are placed into a knapsack of variable capacity.

-  Only the onDomains consistency is available.

•  lightBinaryKnapsack

-  a weaker but more efficient propagation, (strongly polynomial) than the AC version
when the capacity is huge.

Solver<CP> cp();
int w[1..4] = [1,5,3,5];
var<CP>{int} x[1..4](cp,0..1);
var<CP>{int} c(cp,6..7);
solve<cp> {
 cp.post(binaryKnapsack(x,w,c));
}

27 October 2015 Constraint Programming 39

Knapsack Constraints

•  multiknapsack

-  A natural generalization of binaryknapsack is the multiknapsack constraint, under
which a set of weighted items must be placed into several bins:

-  A solution satisfying the constraint is x=[1,1,2,3], l=[6,3,5] because
o  objects 1 and 2, with weights 1 and 5, respectively , are placed into bin 1

(x[1]=x[2]=1) raising its total load to 6 (l[1]=6)
o  object 3, with weight 3, is placed into bin 2 (x[3]=2), so that the load of bin 2

is 3 (l[2]=3)
o  object 4 is placed into bin 3 (x[4]=3), so that the load of bin 3 is 5 (l[3]=5)

-  The only consistency level available for the multiknapsack constraint is Auto (not
easily classifiable).

Solver<CP> cp();
int w[1..4] = [1,5,3,5];
var<CP>{int} x[1..4](cp,0..3);
var<CP>{int} l[1..3](cp,3..7);
solve<cp> {
 cp.post(multiknapsack(x,w,l));
}

27 October 2015 Constraint Programming 40

Redundant Constraints

-  Before addressing the cumulative global constraint we will discuss a simple
scheduling problem and the pitfalls with reasoning with constraints separately.

S1/2

S3/3 S2/4

S4/1

Example:

 A project is composed of the four tasks illustrated in the
graph, showing precedences between them, as well as
mutual exclusion (↔). The tasks durations are shown in
the nodes.

-  The problem may be modeled by the following
precedence and disjunctive constraints

Solver<CP> cp();
var<CP>{int} s[1..4](cp,0..9);
int d[1..4] = [2,4,3,1];
solve<cp> {
 cp.post(s[2] >= s[1]+d[1]);
 cp.post(s[3] >= s[1]+d[1]);
 cp.post(s[4] >= s[2]+d[2]);
 cp.post(s[4] >= s[3]+d[3]);
 cp.post(s3 >= s[2]+d[2] || s2 >= s[3]+d[3]); }

27 October 2015 Constraint Programming 41

Redundant Constraints

-  Because task 1 and both tasks 2 and 3 (as well as task1), must be finished before
task 4 starts, and because the other tasks have durations 2, 4 and 3 respectively,
task 4 may only start at time

 s[4] >= 0+2+3+4 = 9

 which should fix its value to 9. However, because the disjunction is dealt separately
from the precedence constraints, the only propagation that is obtained is

s[4] >= 0+2+4 = 6 and s[4] >= 0+2+3 = 5

 and hence the domain of s[4] is narrowed to 6..9 rather than fixed to 9.

s1/2

s3/3 s2/4

s4/1

 cp.post(s[2] >= s[1]+d[1]);
 cp.post(s[3] >= s[1]+d[1]);
 cp.post(s[4] >= s[2]+d[2]);
 cp.post(s[4] >= s[3]+d[3]);
 cp.post(s[3] >= s[2]+d[2] ||
 s[2] >= s[3]+d[3]);

27 October 2015 Constraint Programming 42

Redundant Constraints

-  In general, the interaction of many constraints may not be adequately processed by
the corresponding propagators.

-  Whenever the pitfalls of such interaction are identified, one technique that might be
used is the inclusion of redundant constraints.

-  Such constraints do not add to the semantics of the programs, i.e. the programs with
and without them are equivalent. However, they add to the efficiency of constraint
processing, improving its pruning, and therefore leading to a more efficient search.

-  In scheduling problems, these redundant constraints, aim at improving the beginning
and ending of the tasks (edge-finding).Two simple cases are

-  when k non-ovelapping tasks Xi antecede some task Z the following redundant
constraint can be added

sz >= min { min(s1), min(s2),, min(sk) } + d1 +d2 + ... + dk

-  when k non-ovelapping tasks Xi succeed some task Z the folowing redundant
constraint can be added

sz + dz <= max { max(s1), max(s2),, max(sk) } - d1 -d2 - ... - dk

27 October 2015 Constraint Programming 43

Cumulative Constraints

-  In general, edge finding requires more sophisticated techniques, namely in problems
combining scheduling and resource management.

-  In fact, if many units of a resource are available, then more than one of the tasks that
use these resources may execute simultaneously. All that is needed is that the
number of resources required at any given time does not exceed the existing
resources.

-  This is the semantics of the cumulative constraint, initially introduced in CHIP, and
which had an enormous impact in the area of constraint programming.

-  Let S be the set of starting times of n tasks si, D be the set of their durations di and
R the set of the number of resources of a given type required by the tasks, ri.
Denoting by

 a = mini(si) ; b = maxi(si+di);
 ri,k = ri if si =< tk =< si+di or 0 otherwise.

 then
 cumulative(S,D,R,L) ⇔ ∀ Σ ri,k ≤ L
 k ∈ [a,b] i

27 October 2015 Constraint Programming 44

Cumulative Constraints

-  In Comet the cumulative constraint has the following format:

cumulative<CP>(int o,int h,int maxCap,var<CP>{int}[] s,
 var<CP>{int}[] d,var<CP>{int}[] cap)

-  The arguments of the constraint can be interpreted as
•  int o: origin of time period
•  int h: horizon of time period
•  int maxCap: maximum capacity
•  var<CP>{int}[] s: start variables
•  var<CP>{int}[] d: duration variables
•  var<CP>{int}[] cap: capacity requirement

-  As explained It essentially enforces the following conditions (where R is the range
of the arrays s, d and cap):

-  For each I in R, s[i] >= o and s[i] + d[i] <= h.
-  For each t in [o,h], sum(i in R: s[i] <= t < s[i] + d[i]) cap[i] <= maxCap.
-  For each t in [o,h], sum(i in R: s[i] <= t < s[i] + d[i]) cap[i] <= maxCap.

27 October 2015 Constraint Programming 45

Cumulative Constraints

Example:

 Take 7 tasks (A a G) with the duration and resource consumption (e.g. number of
workers needed to carry them out) specified in the following arrays

d = [2 , 4 , 3 , 2 , 1 , 2 , 2] ; c = [4 , 1 , 3 , 1 , 2 , 3 , 2]

 Graphically, the tasks can be viewed as

Goal: Assuming there are Rmax resources (e.g. workers) available at all times

 (Sat) Find whether the tasks may all be finished in a given due time Tmax;

 (Opt) Find the minimum due time Tmax (make span)

Many instances of the problem may be modelled by a simple constraint

 cumulative<CP>(0,H,M,s,d,c)

plus some additional constraints regarding the domains of the starting time variables.

27 October 2015 Constraint Programming 46

Cumulative Constraints

Some Instances: cumulative<CP>(O,H,M,s,d,c)

-  With M = 4 (4 resource units available) and imposing that all tasks start no earlier
than 0 (O = 0) and finish no later than time 9 (H = 9+1) a number of answers are
obtained, (allowing one of the 6 workers to rest for one hour) namely

4

3

2

1

1 2 3 4 5 6 7 8 9

8 1 3 5 7 1 6

R

t

1 3 3 7 9 6 8

6 1 1 8 5 8 4

27 October 2015 Constraint Programming 47

Cumulative Constraints

Some Instances:

-  With M = 6 (6 resource units available) and imposing that all tasks are finished at
time 6 (H = 6+1) a number of answers are still obtained, (allowing no rest for the
workers)

1 1 3 3 5 6 6 4 4 1 6 3 6 1

27 October 2015 Constraint Programming 48

Cumulative Constraints

-  In some applications, tasks are flexible, in the sense that time may be traded for
resources.

-  For example, a flexible task might require either 2 workers working for 3 hours, or 3
workers working for 2 hours. It may even be executed by a single worker during 6
hours, or by 6 workers in 1 hour.

-  Flexible tasks may be more easily accomodated within the resources (and time)
available.

-  Scheduling of this type of tasks may be specified as before.

-  However, whereas in the previous case, the durations d and resources c used by
each task i were constants, now they are variables a and b constrained by

cp.post(s[i] * d[i] = a[i] * b[i])

27 October 2015 Constraint Programming 49

Cumulative Constraints

Results

 With H = 5+1 and M = 7 (previously impossible) there are now several solutions.
(Notice the “deeper” transformation in task 2, from (4*1 ⇒ 2*2), in addition to a
“rotation”).

T 2 4 3 1 1 2 2
R 4 1 3 2 2 3 2
S 4 2 1 1 1 2 4

T 2 2 3 1 1 2 2
R 4 2 3 2 2 3 2
S 1 4 1 5 3 4 3

27 October 2015 Constraint Programming 50

Cumulative Constraints: Job Shop

-  The job shop problem consists of executing the different tasks of several jobs without
exceeding the available resources.

-  Within each job, there are several tasks, each with a duration. Within each job, the
tasks have to be performed in sequence, possibly respecting mandatory delays
between the end of a task and the start of the following task.

-  Tasks of different jobs are independent, except for the sharing of common resources
(e.g. machines). Each task must be executed in one machine of a certain type. The
number of machines of each type is limited.

-  A simple instance of the problem (with 2 machines) is given in the table below (with
the corresponding graphic representation).

J1

J2

J3

J4

1 2 3

1 2 3

1 2 3

1 2 3
Z, D 1 2 3

1 1 , 2 2 , 4 1 , 7
2 1 , 3 2 , 4 1 , 5
3 1 , 5 2 , 3 2 , 3
4 1 , 3 2 , 3 2 , 4

J
o
b
s
X

Tasks Y

27 October 2015 Constraint Programming 51

Cumulative Constraints: Job Shop

-  This instance was proposed in the book Industrial Scheduling [MuTh63]. For 20
years no solution was found that optimised the “makespan”, i.e. the fastest
termination of all tasks.

-  Around 1980, the best solution was 935 (time units). In 1985, the optimum was
lower bounded to 930. In 1987 the problem was solved with a highly specialised
algorithm, that found a solution with makespan 930.

-  With the cumulative/4 constraint, in the early 1990’s, the problem was solved in
1506 seconds (in a SUN/SPARC workstation).

Z, D 1 2 3 4 5 6 7 8 9 a

1 1, 29 2, 78 3, 9 4, 36 5, 49 6, 11 7, 62 8, 56 9, 44 a, 21
2 1, 43 3, 90 5, 75 a, 11 4, 69 2, 28 7, 46 6, 46 8, 72 9, 30
3 2, 91 1, 85 4, 39 3, 74 9, 90 6, 10 8, 12 7, 89 a, 45 5, 33
4 2, 81 3, 95 1, 71 5, 99 7, 9 9, 52 8, 85 4, 98 a, 22 6, 43
5 3, 14 1, 6 2, 22 6, 61 4, 26 5, 69 9, 21 8, 49 a, 72 7, 53
6 3, 84 2, 2 6, 52 4, 95 9, 48 a, 72 1, 47 7, 65 5, 6 8, 25
7 2, 46 1, 37 4, 61 3, 13 7, 32 6, 21 a, 32 9, 89 8, 30 5, 55
8 3, 31 1, 86 2, 46 6, 74 5, 32 7, 88 9, 19 a, 48 8, 36 4, 79
9 1, 76 2, 69 4, 76 6, 51 3, 85 a, 11 7, 40 8, 89 5, 26 9, 74
a 2, 85 1, 13 3, 61 7, 7 9, 64 a, 76 6, 47 4, 52 5, 90 8, 45

Tasks Y

J
o
b
s

X

27 October 2015 Constraint Programming 52

Placement Problems

-  Several applications of great (economic) importance require the satisfaction of
placement constraints, i.e. the determination of where to place a number of
components in a given space, without overlaps.

Some of these applications include:

-  Wood boards cuttings: a number of smaller pieces should be cut from large boards:

-  Placement of items into a large container.

In the first 2 problems the space to consider is 2D, whereas the third problem
is a typical 3D application. We will focus on 2D problems.

-  An immediate parallelism can be drawn between these 2D problems and
those of scheduling, if the following correspondences are made:

-  Time ↔ the X dimension;

-  Resources ↔ the Y dimension;

-  A task duration ↔ the item X size (width);

-  A task resource ↔ the item Y size (height).

27 October 2015 Constraint Programming 53

Placement Problems

Example:

Find the appropriate cuts to be made on a wood board of dimensions W * H so as
to obtain 11 rectangular pieces (A a K).

 The various pieces to obtain have the following dimensions (width-w and height-h)

 w = [1, 2, 1, 3, 1, 2, 4, 5, 2, 3, 3]
h = [2, 1, 3, 1, 4, 2, 1, 1, 3, 2, 3]

 Graphically

 and the constraint used, adapting durations to widths and resources to heights is

cumulative<CP>(1,W+1,H,x,w,h)

D

B

K
A

C
E F

G

H

I
J

27 October 2015 Constraint Programming 54

Placement Problems

-  Unfortunately, the results obtained have not a direct reading. For example, one of
the solutions obtained with an 8*6 rectangle is

x = [6, 7, 5, 1, 4, 5, 1, 1, 7, 6, 1]

 That can be read as (???) or as

D

B

K
A

C
E F

G

H

I
J

D

G

I

BC
A

J
H

E

F
K

27 October 2015 Constraint Programming 55

Placement Problems

-  To avoid this ambiguity, one should explicitely compute, not only the X-origin of the
rectangles, but also its Y-origin.

-  Such computation can easily be made, taking into account that all that is needed is
considering a rotation of 90º in the viewing perspective, changing the X with the Y
axes.

-  Hence, all that is required is a “duplication” of the previous program, considering not
only X variables, but also Y variables for explicit control over the Y-origins of the
rectangles.

cumulative<CP>(1,W+1,H,x,w,h)
cumulative<CP>(1,H+1,W,y,h,w)

 where
 w = [1,2,1,3,1,2,4,5,2,3,3]
h = [2,1,3,1,4,2,1,1,3,2,3]

D

B

K
A

C
E F

G

H

I
J

27 October 2015 Constraint Programming 56

Placement Problems

-  Yet, the results still aren’t what they should be. For example, the first solution
obtained is

x-y = [7-4,6-2,5-1,1-5,4-1,5-4,1-1,1-6,7-1,6-5,1-2]

 corresponding to

-  Analysing the problem, it becomes clear that its cause is the fact that no non-

overlaping constraint was imposed on the rectangles!

D

B

K
A

C
E F

G

H

I
J

?????

27 October 2015 Constraint Programming 57

Placement Problems

-  Several applications of great (economic) importance require the satisfaction of
placement constraints, i.e. the determination of where to place a number of
components in a given space, without overlaps.

-  The non overlapping of the rectangles defined by their x and y origins and their
widths w (x-sizes) and heights h (y-sizes) is guaranteed, as long as one of the
constraints below is satisfied (for rectangles i and j)

 x[i]+w[i] <= x[j] rectangle i is left of rectangle j
 x[j]+w[j] <= x[i] rectangle i is rigth of rectangle j

 y[i]+h[i] <= y[j] rectangle i is below rectangle j

 y[j]+h[j] <= y[i] rectangle i is above rectangle j

-  As explained before, rather than commiting to one of these conditions, and change
the commitment by backtracking, a better option is to adopt a least commitment
approach, for implementing such disjunctive constraint.

27 October 2015 Constraint Programming 58

Placement Problems

Important points to stress

-  The enumeration should be made jointly on both the Xi and the Yj, hence their
merging into a single list Z.

-  Several heuristics could possibly be used for variable enumeration. The heuristic
chosen, ffc, is the classical choice.

-  Alternatively, one could possibly start placing the “largest” rectangles in the
corners, so as to make room for the others.

-  The cumulative constraints are not strictly necessary, given the overlapping and
the maximum constraints applied in both dimensions.

-  Yet, they are extremely useful. Without them, the program would “hardly” work!

27 October 2015 Constraint Programming 59

Placement Problems

-  The cumulative constraints are not strictly necessary, given the overlapping and
the maximum constraints applied in both dimensions.

-  Nevertheless, the results below show that the use of redundant cumulative
constraints, may speed up execution very significantly.

910 111

3
2 4

6
5

7

8

1

8 10
6 2

3
11

9

4

7

5

x[4,6,7,1,8,4,1,1,5,6,1]
 y[2,4,1,5,1,4,1,6,1,5,2]

2800 ms / 105453 fails

1

2

3 9

10

11

4

5

6

7

8

x[4,7,5,1,6,4,1,1,7,6,1]
y[2,4,1,5,1,4,1,6,1,5,2]

1 ms / 14 fails

Speedup

Run time : > 1000

Backtracks: > 10000

without cumulative: with cumulative:

