
19 October 2015 Constraint Programming 1

Search and Optimisation

-  An overview

• Algorithms to enforce Node- and Arc-consistency

• Non-Binary Networks

• Consistency and Satisfiability

• Bounds-Consistency and Generalised Arc-Consistency

19 October 2015 Constraint Programming 2

Enforcing Node-Consistency

Definition (Node Consistency):

 A constraint satisfaction problem is node-consistent if no value on the
domain of its variables violates the unary constraints.

Enforcing node consistency: Algorithm NC-1

-  This can be enforced by the very simple algorithm shown below:

procedure NC-1(V, D, C);
 for x in V
 for v in Dx do
 for Cx in {C: Vars(Cx) = {x}} do
 if not satisfy(x-v, Cx) then
 Dx <- Dx \ {v}
 end for
 end for
 end for
end procedure

19 October 2015 Constraint Programming 3

Enforcing Node-Consistency

Space Complexity of NC-1: O(nd).

-  Assuming n variables in the problem, each with d values in its domain, and
assuming that the variable’s domains are represented by extension, a
space nd is required to keep explicitely the domains of the variables.

-  Algorithm NC-1 does not require additional space, so its space complexity is
O(nd).

Time Complexity of NC-1: O(nd).

-  Assuming n variables in the problem, each with d values in its domain, and
taking into account that each value is evaluated one single time, it is easy to
conclude that algorithm NC-1 has time complexity O(nd).

The low complexity, both temporal and spatial, of algorithm NC-1, makes it
suitable to be used in virtual all situations by a solver, despite the low pruning
power of node-consistency.

19 October 2015 Constraint Programming 4

Enforcing Arc-Consistency: AC-1

Definition (Arc Consistency):
A constraint satisfaction problem is arc-consistent if it is node-consistent and
•  For every label xi-vi of every variable xi, and for all constraints Cij, defined over

variables xi and xj, there must exist a value vj that supports vi.

Enforcing arc-consistency: Algorithm AC-1
-  The following simple (and inefficient) algorithm enforces arc-consistency:

-  Note: for any constraint cij two directed arcs, aij e aji, are considered.

procedure AC-1(V, D, C);
 NC-1(V,D,C); % node consistency
 Q = {aij | cij ∈ C ∨ cji ∈ C }; % see note
 repeat
 changed <- false;
 for aij in Q do
 changed <- changed or revise_dom(aij,V,D,C)
 end for
 until not change
end procedure

19 October 2015 Constraint Programming 5

Enforcing Arc-Consistency: AC-1

Revise-Domain

-  Algorithm AC-1 (and others) uses predicate revise-domain on some arc aij,
that succeeds if some value is removed from the domain of variable xi (a side-
effect of the predicate).

predicate revise_dom(aij,V,D,C): Boolean;
 success <- false;
 for v in dom(xi) do
 if ¬ ∃vj in dom(xj): satisfies({xi-v,xj-vj},cij) then
 dom(xi) <- dom(xi) \ {v};
 success <- true;
 end if
 end for
 revise_dom <- success;
end predicate

19 October 2015 Constraint Programming 6

Enforcing Arc-Consistency: AC-1

Space Complexity of AC-1: O(ad2)

-  AC-1 must maintain a queue Q, with maximum size 2a. Hence the inherent
spacial complexity of AC-1 is O(a).

-  To this space, one has to add the space required to represent the domains
O(nd) and the constraints of the problem. Assuming a constraints and d
values in each variable domain the space required is O(ad2), and a total
space requirement of

O(nd + ad2)

 which dominates O(a).

-  For “dense” constraint networks”, a ≈ n2/2. This is then the dominant term,
and the space complexity becomes

O(ad2) = O(n2d2)

19 October 2015 Constraint Programming 7

Enforcing Arc-Consistency: AC-1

Time Complexity of AC-1: O(nad3)

-  Assuming n variables in the problem, each with d values in its domain, and
a total of a arcs, in the worst case, predicate revise_dom, checks d2 pairs of
values.

-  The number of arcs aij in queue Q is 2a (2 directed arcs aij and aji are
considered for each constraint Cij). For each value removed from one
domain, revise_dom is called 2a times.

-  In the worst case, only one value from one variable is removed in each
cycle, and the cycle is executed nd times.

-  Therefore, the worst-case time complexity of AC-1 is O(d2 *2a*nd), i.e.

O(nad3)

19 October 2015 Constraint Programming 8

Enforcing Arc-Consistency: AC-3

Enforcing node consistency: Algorithm AC-3

-  Whenever a value vi is removed from the domain of some xi, all arcs are
reexamined. However, only the arcs aki (for k ≠ i§) should be reexamined.

-  This is because the removal of vi may eliminate the support from some value vk of
some variable xk for which there is a constraint cki (or cik).

-  Such inefficiency of AC-1 is avoided in AC-3 below

procedure AC-3(V, D, C);
 NC-1(V,D,C); % node consistency
 Q = {aij | cij ∈ C ∨ cji ∈ C };
 while Q ≠ ∅ do
 Q = Q \ {aij} % removes an element from Q
 if revise_dom(aij,V,D,C) then % revised xi
 Q = Q ∪ {aki | (cik ∈ C ∨ cki ∈ C)∧ k ≠ i}
 end if
 end while
end procedure

19 October 2015 Constraint Programming 9

Enforcing Arc-Consistency: AC-3

Space Complexity of AC-3: O(ad2)

-  AC-3 has the same requirements than AC-1, and the same worst-case
space complexity of O(ad2) ≈ O(n2d2), due to the representation of
constraints by extension.

Time Complexity of AC-3: O(ad3)

-  Each arc aki is only added to Q when some value vi is removed from the
domain of xi.

-  In total, each of the 2a arcs may be added to Q (and removed from Q) d
times.

-  Every time that an arc is removed, predicate revise_dom is called, to check
at most d2 pairs of values.

-  All things considered, and in contrast with AC-1, with temporal complexity
O(nad3), the time complexity of AC-3, in the worst case, is O(2ad * d2), i.e.

O(ad3)

19 October 2015 Constraint Programming 10

Enforcing Arc-Consistency: AC-4

Inefficiency of AC-3

-  Every time a value vi is removed from the domain of some variable xi, all arcs
aki (k ≠ i) leading to that variable are reexamined.

-  Nevertheless, only some of these arcs should be examined.

-  Although the removal of vi may eliminate one support for some value vk of
another variable xk (given constraint cki), other values in the domain of xi may
support the pair xk-vk!

This idea is exploited in algorithm AC-4, that uses a number of new data-structures
to count supporting values

§  Counters: For counting support values of label {xi-vi} in xj

§  Suporting Sets: That explicitly enumerate the labels {xj-vj} that are
supported by label {xi-vi}, w.r.t. any constraint cij.

§  List: Queue of removed labels to be examined (similar to Q in AC-3)

§  Matrix M: Maintains information on whether a label {xi-vi} is still present.

19 October 2015 Constraint Programming 11

Enforcing Arc-Consistency: AC-4

AC-4 Counters

-  For example, in the 4 queens problem, the counters that account for the support
of value q1= 2 are initialised as follows

§  c(2,q1,q2) = 1 % q2-4 does not attack q1-1

§  c(2,q1,q3) = 2 % q3-1 and q3-3 do not attack q1-1

§  c(2,q1,q4) = 3 % q4-1,q4-3 and q4-4 do not attack q1

 AC-4 Supporting Sets

-  To update the counters when a value is eliminated, it is useful to maintain the
set of Variable-Value pairs that are supported by each value of a variable.

-  AC-4 thus maintain for each Value-Variable pair the set of all Variable-Value
pairs supported by the former pair.

•  sup(1,q1) = [q2-2, q2-3, q3-2, q3-4, q4-2, q4-3]
•  sup(2,q1) = [q2-4, q3-1, q3-3, q4-1, q4-3, q4-4]
•  sup(3,q1) = [q2-1, q3-2, q3-4, q4-1, q4-2, q4-4]
•  sup(4,q1) = [q2-1, q2-2, q3-1, q3-3, q4-2, q4-3]

19 October 2015 Constraint Programming 12

Enforcing Arc-Consistency: AC-4

Algorithm AC-4 (Overall Functioning) AC-4 is composed of two phases:

a)  initialisation, which is executed only once; and

b)   propagation, executed after the first phase, and after each enumeration step.

procedure initialise_AC-4(V,D,C);
 M <- 1; sup <- ∅; List = ∅;
 for cij in C do

 for vi in dom(xi) do
 ct <- 0;
 for vj in dom(xj) do
 if satisfies({xi-vi, xj-vj}, cij) then
 ct <- ct+1; sup(vj,xj)<- sup(vj,xx) ∪ {xi-vi}
 end if
 endfor
 if ct = 0 then M[xi,vi] <- 0; List <- List ∪ {xi-vi};
 dom(xi) <- dom(xi)\{vi}
 else c(vi, xi, xj) <- ct;
 end if
 end for

 end for
end procedure

19 October 2015 Constraint Programming 13

Enforcing Arc-Consistency: AC-4

Algorithm AC-4 (propagation phase)

procedure propagate_AC-4(List,V,D,R);
while List ≠ ∅ do
 List <- List\{xi-vi} % remove element from List
 for xj-vj in sup(vi,xi) do

 c(vj,xj,xi) <- c(vj,xj,xi) - 1;
 if c(vj,xj,xi) = 0 ∧ M[xj,vj] = 1 then
 List = List ∪ {xj-vj};
 M[xj,vj] <- 0;
 dom(xj) <- dom(xj) \ {vj}
 end if
end for

 end while
end procedure

19 October 2015 Constraint Programming 14

Enforcing Arc-Consistency: AC-4

Space Complexity of AC-4: O(ad2)

-  As a whole algorithm AC-4 maintains

§  Counters: As discussed, a total of 2ad

§  Suporting Sets: In the worst case, for each constraint cij, each of the d xi-vi
pairs supports d values vj from xj (and vice-versa). The space to maintain the
supporting sets is thus O(ad2).

§  List: Contains at most 2a arcs

§  Matrix M: Maintains nd Boolean values.

-  The space required to maintain the supporting sets dominates. Compared with
AC-3, where a space of size O(a) was required to maintain the queue, AC-4 has a
much worse space complexity of O(ad2)

19 October 2015 Constraint Programming 15

Enforcing Arc-Consistency: AC-4

Time Complexity of AC-4: O(ad2)

-  Analysing the cycles executed in the procedure initialise_AC-4,
 for cij in C do
 for vi in dom(xi) do
 for vj in dom(xj) do

and assuming that the number of constraints (arcs) is a and the variables have all d
values in their domains, the inner cycle of the procedure is executed 2ad2 times, which
sets the time complexity of the initialisation phase to O(ad2).

-  In the inner cycle of procedure propagate_AC-4 a counter for pair xj-vj is decremented

 c(vj,xj,xi) <- c(vj,xj,xi) - 1

Since there are 2a arcs and each variable has d values in its domain, there are 2ad
counters. Each counter is initialised at most to d, as each pair xj-vj may only have d
supporting values in the domain of another variable xi.

Hence, the inner cycle is executed at most 2ad2 times, which determines the time
complexity of the propagation phase of AC-4 to be O(ad2)

19 October 2015 Constraint Programming 16

Enforcing Arc-Consistency: AC-4

The asymptotic complexity of AC-4, cannot be improved by any algorithm!

-  To check whether a network is arc consistent it is necessary to test, for each
constraint Cij, that the d pairs Xi-vi have support in Xj, for which d tests might
be required. Since each of the a constraints is considered twice, then 2ad2
tests are required, with assymptotic complexity O(ad2) similar to that of AC-4.

-  However, one should bear in mind that the worst case complexity is
asymptotic. The data structures of AC-4, namely the counters that enable
improving the support detection are too demanding. The initialisation of these
structures is also very heavy, namely if the domains have large cardinality, d.

-  The space required by AC-4 is also problematic, specially when the constraints
are represented by intension, rather than by extension (in this latter case, the
space required to represent the constraints is of the same order of
magnitude...).

-  All in all, it has been observed that, in practice (typically),

AC-3 is usually more efficient than AC-4!

19 October 2015 Constraint Programming 17

Enforcing Arc-Consistency: AC-6

-  Algorithm AC-6 avoids the outlined inefficiency of AC-4 with a basic idea: instead
of keeping (counting) all values vi from variable xi that support a pair xj-vj, it
simply maintains the lowest such vi that supports the pair.

-  The initialisation of the algorithm becomes “lighter”. Whenever the first value vi is
found, no more supporting values are sought and no counting is required. Also,
in AC-6, the supporting sets become singletons.

-  Data Structures of Algorithm AC-6
§  The List is adapted
§  Boolean matrix M from AC-4 is kept.
§  The AC-4 counters are disposed of;
§  The supporting sets become “singletons”, only keeping
 the lowest value supported .

•  sup(1,x1) = [x2-2, x2-3, x3-2, x3-4, x4-2, x4-3]
•  sup(2,x1) = [x2-4, x3-1, x3-3, x4-1, x4-3, x4-4]
•  sup(3,x1) = [x2-1, x3-2, x3-4, x4-1, x4-2, x4-4]
•  sup(4,x1) = [x2-1, x2-2, x3-1, x3-3, x4-2, x4-3]

19 October 2015 Constraint Programming 18

Enforcing Arc-Consistency: AC-6

-  Both phases of AC-6 use predicate

 next_support(xi, vi, xj, vj, out v)

that succeeds if there is in the domain of xj a “next” supporting value v, the
lowest value, no less than some value, vj, such that xj-v supports xi-vi.

predicate next_support(xi,vi,xj,vj, out v): boolean;
 sup_s <- false; v <- vj;
 while not sup_s and v =< max(dom(xj)) do
 if not satisfies({xi-vi,xj-v},cij) then

 v <- next(v,dom(xj))
 else
 sup_s <- true
 end if
 end while
 next_support <- sup_s;

 end predicate.

19 October 2015 Constraint Programming 19

Enforcing Arc-Consistency: AC-6

Algorithm AC-6 (initialisation phase)

procedure initialise_AC-6(V,D,C);
 List <- ∅; M <- 0; sup <- ∅;
 for cij in C do
 for vi in dom(xi) do
 v = min(dom(xj))
 if next_support(xi,vi,xj,v,vj) then
 sup(vi,xi)<- sup(vi,xi) ∪ {xj-vj}
 else
 dom(xi) <- dom(xi)\{vi};
 M[xi,vi] <- 0;
 List <- List ∪ {xi-vi}
 end if
 end for
end for
end procedure

19 October 2015 Constraint Programming 20

Enforcing Arc-Consistency: AC-6

Algorithm AC-6 (propagation phase)

procedure propagate_AC-6(List,V,D,C);
while List ≠ ∅ do
 List <- List\{xj-vj} % removes xj-vj from List
 for xi-vi in sup(vj,xj) do

 sup(vi,xi) <- sup(vi,xi) \ {xj-vj} ;
 if M[xi,vi] = 1 then
 if next_suport(xi,vi,xj,vj,v) then
 sup(vi,xi)<- sup(vi,xi) ∪ {xj-v}
 else
 dom(xi) <- dom(xi)\{vi}; M[xi,vi] <- 0;
 List <- List ∪ {xi-vi}
 end if
 end if
 end for

end while
end procedure

19 October 2015 Constraint Programming 21

Enforcing Arc-Consistency: AC-6

Space Complexity of AC-6: O(ad)

In total, algorithm AC-6 maintains

§  Supporting Sets: In the worst case, for each of the a constraints cij, each of the d
pairs xi-vi is supported by a single value vj form xj (and vice-versa). Thus, the space
required by the supporting sets is O(ad).

§  List: Includes at most nd labels

§  Matrix M: Maintains nd Booleans.

§  The space required by the supporting sets is dominant, so algorithm AC-6 has a space
complexity of

§  O(ad)

 between those of AC-3 (O(a)) and AC-4 (O(ad2)).

19 October 2015 Constraint Programming 22

Enforcing Arc-Consistency: AC-6

Time Complexity of AC-6: O(ad2)

§  In both phases of initialisation and propagation, AC-6 executes

 next_support(xi, vi, xj, vj, v)

 in its inner cycle.

§  For each pair xi-vi, variable xj is checked at most d times.

§  For each arc corresponding to a constraint Cij, d pairs xi-vi are considered at most.

§  Since there are 2a arcs (2 per constraint Cij), the time complexity, worst-case, in
any phase of AC-6 is

O(ad2).

§  Like in AC-4, this is optimal assymptotically.

19 October 2015 Constraint Programming 23

Assessing Typical Complexity

-  Typical complexity of AC-x algorithms

•  The worst case time complexity that can be inferred from the algorithms do not
give a precise idea of their average behaviour in typical situations. For such study,
either one tests the algorithms in:

•  A set of “benchmarks”, i.e. problems that are supposedly representative of
everyday situations (e.g. N-queens); or

•  Randomly generated instances parameterised by

•  their size (number of variables and cardinality of the domains) ; and

•  their difficulty measured by

•  density of the constraint network - % existing/ possible constraints; and

•  tightness of the constraints - % of allowed / all tuples.

•  The study of these issues has led to the conclusion that constraint satisfaction
problems often exhibit a phase transition, which should be taken into account in
the study of the algorithms.

19 October 2015 Constraint Programming 24

Assessing Typical Complexity: Phase Transition

-  This phase transition typically contains the most difficult instances of the
problem, and separates the instances that are trivially satisfied from those
that are trivially insatisfiable.

-  For example, in SAT problems, it has been found that the phase transition
occurs when the ratio of clauses to variables is around 4.3.

0 5 10 15

clauses / # variables

d
i
f
f
i
c
u
l
t
y

4.3

19 October 2015 Constraint Programming 25

Assessing Typical Complexity

-  Typical Complexity of algorithms AC-3, AC-4 e AC-6
-  (N-queens)

0

2000

4000

6000

8000

10000

12000

14000

16000

4 5 6 7 8 9 10 11

#
 t

es
ts

 a
nd

 o
pe

ra
tio

ns

AC-3
AC-4
AC-6

queens

19 October 2015 Constraint Programming 26

Assessing Typical Complexity

Typical Complexity of algorithms AC-3, AC-4 e AC-6
 (randomly generated problems)

n = 12 variables, d= 16 values, density = 50%

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000
22000

5 10 15 20 25 30 35 40 45 50 60 70 80

#
 t

es
ts

 a
nd

 o
pe

ra
ti

on
s

AC-3
AC-4
AC-6

Tightness (%)

19 October 2015 Constraint Programming 27

Path-Consistency

Definition (Path Consistency):

A constraint satisfaction problem is path-consistent if,

•  It is arc-consistent; and

•  Every consistent 2-compound label {Xi-vi, Xij-vj,} can be extended to a
consistent label with a third variable Xk (k ≠ i and k ≠j }.

The second condition is more easily understood as

•  For every compound label {Xi-vi, Xij-vj,} there must be a value vk that
supports {Xi-vi, Xij-vj,}, i.e. the compound label {Xi-vi, Xj-vj, Xk-vk} satisfies
constraints Cij, Cik, and Ckj.

19 October 2015 Constraint Programming 28

Binary Constraints: i-consistency

-  The notions of node-, arc- and path-consistency can be generalised for a
common criterion: i-consistency, with increasing demands of consistency.

0 0 ≠

0,1 0,1
≠

0,1
≠ ≠

0..2 0..2
≠

0..2

≠ ≠

0..2

≠
≠

≠

-  A node consistent network, that is not arc
consistent

-  An arc consistent network, that is not path
consistent

-  A path-consistent network, that is not 4-
consistent

19 October 2015 Constraint Programming 29

Binary Constraints: i-consistency

-  The criterion of i-consistency is thus defined as follows.

•  A network is i-consistent if all compound labels of cardinality i-1 can be
extended to any other i-th variable.

1.  For example, with k = i-1, any compound label <xa1-va1, xa2-va2, ..., xak-vak>,
that satisfies the constraints over variables of set S = {xa1, xa2, ..., xak}
can be extended to another variable xai, i.e. there is a vai in the domain of xai
that satisfies all the constraints defined on the set S ∪ {xai} of variables.

2.  As a special case, when i=1, only the unary constraints must be satisfied.

-  Additionally, a network is strongly i-consistent if it is k-consistent for all k ≤ i.

-  Given this definitions it is easy to show that the following equivalences:

 Node-consistency ↔ strong 1-consistency

 Arc- consistency ↔ strong 2-consistency

 Path-consistency ↔ strong 3-consistency

19 October 2015 Constraint Programming 30

Binary Constraints: i-consistency

-  Notice that the analogies of node-, arc- and path- consistency were made with
respect to strong i-consistency.

-  This is because a constraint network may be i-consistency but not m-
consistent (for some m < i). For example, the network below is 3-consistent,
but not 2-consistent. Hence it is not strongly 3-consistent.

0 0

0,1
≠ ≠

B

C A
-  The only 2-compound labels, that satisfy the

constraints

{A-0,B-1}, {A-0,C-0}, and {B-1, C-0}

 may be extended to the remaining variable

{A-0,B-1,C-0}

-  However, the 1-compound label {B-0} cannot be
extended to variables A or C {A-0,B-0} !

19 October 2015 Constraint Programming 31

Binary Constraints: i-consistency

 -  For i > 3, i-consistency cannot be implemented with binary constraints alone, In fact:

-  2-consistency checks whether a 1-label {xi-vi} can be extended to some other
2-label {xi-vi, xj-vj}. If that is not the case, label {xi-vi} is removed from the
domain of Xi.

-  3-consistency checks whether a 2-label {xi-vi, xj-vj} can be extended to a 3-label
{xi-vi, xj-vj, xk-vk} . If that is not the case, label {xi-vi, xj-vj} is removed.

-  Removing label {xi-vi, xj-vj} is not achieved by removing values from the
domains of the variables, but rather by tightening a constraint Cij on variables xi
and xj.

-  By analogy, to impose 4-consistency 3-labels have to be removed so a constraint
on 3 variables has to be created or tightened.

-  In general, maintaining i-consistency requires imposing constraints with arity i-1.

19 October 2015 Constraint Programming 32

Binary Constraints: i-consistency

 -  The algorithms that were presented for achieving arc-consistency could be

adapted to obtain i-consistency, provided that we consider constraints with i-1
arity.

-  The adaptation of the AC-1 algorithm (brute-force) would have

-  Time complexity of O(2i (nd)2i).

-  Space complexity of O(nidi).

-  The adaptation of the AC-4 and AC-6 algorithms lead to optimal asymptotic time
complexity of Ω (nidi) (a lower bound).

-  Given the mentioned complexity (even if the typical cases are not so bad) their
use in backtrack search is generally not considered.

-  The main application of these criteria is in cases where tractability can be
proved based on these criteria.

19 October 2015 Constraint Programming 33

Network Consistency and Satisfiability

 All types of i-consistency can be imposed by polinomial algorithms, with asymptotic
time complexity Ω(nidi) even when the corresponding problems (modelled with
binary constraints) are NP-complete.

Hence, in general for a network with n variables, i-consistency (for any i < n) i-does
not imply satisfiability of the problem, i.e.

There are unsatisfiable problems modelled with binary constraints whose
corresponding network is i-consistent.

Of course, the converse is also true

There are satisfiable problems modelled with binary constraints whose
corresponding network is not i-consistent.

Nevertheless, in some special cases, the two concepts (i-consistency and
satisfiability are equivalent).

We will overview two such cases.

19 October 2015 Constraint Programming 34

Network Consistency and Satisfiability

 Case 1: A network of binary constraints, whose variables have only 2 values in their
domain, is satisfiable iff it can be made path-consistent.

Proof: By recasting the problem to 2-SAT.

If the network is path-consistent, then

1.  all binary constraints are explicit, and

2.  the matrices representing the constraints have a maximum of 2 rows and 2
columns.

In this case, the satisfaction of a constraint can be equated to the satisfaction of a
Boolean formula in disjunctive normal form (see figure below for an example).

 (a2 ∧ b3) ∨ (a2 ∧ b4) ∨ (a5 ∧ b4)

a\b	 3	 4	

2	 1	 1	

5	 0	 1	

19 October 2015 Constraint Programming 35

Network Consistency and Satisfiability

Now, these formulae can be converted into conjunctive normal form.

(a2 ∧ b3) ∨ (a2 ∧ b4) ∨ (a5 ∧ b4) ⇔
 (a2∨a2∨a5) ∧ (a2∨a2∨b4) ∧ (a2∨b4∨a5) ∧ (a2∨b4∨b4)
∧ (b3∨a2∨a5) ∧ (b3∨a2∨b4) ∧ (b3∨b4∨a5) ∧ (b3∨b4∨b4)

The resulting clauses have as many literals as 1´s in the matrix that models a
constraint (after imposing path-consistency. In this case the clauses have 3 literals.

But such clauses may be simplified, by adding the semantics associated to the
encoding (a variable must have a single value)

a2 ∨ a5 = true; b3 ∨ b4 = true

Yielding, (after simplification) a set of clauses, each having only 2 literals.

 true ∧ (a2 ∨ b4) ∧ true ∧ (a2 ∨ b4)

∧  true ∧ true ∧ true ∧ true ⇔

 (a2∨b4) ♦

19 October 2015 Constraint Programming 36

Graph Width

-  Before presenting another theorem relating k-consistency and tractability it is
convenient to consider constraint networks with n-ary constraints (n>2), either
because a problem is specified with such constraints, or because these
constraints are induced in a (binary) graph when k-consistency (k>3) is
imposed on the constraint network.

-  For this purpose we have the following definition:

Definition: Primal Graph of a Constraint Network

The primal graph of a constraint network is a graph where there is an edge
between two variables iff there is some constraint with the two variables in its
scope.

Given the definition, the primal graph of a constraint satisfaction problem
coincides with the problem graph if the only constraints to be considered are
binary (or unary).

19 October 2015 Constraint Programming 37

Graph Width

Example:

1.  Let us assume that the in i t ia l
formalisation of a problem leads to the
network P1.

2.  Imposing path-consistency, arcs are
added between variables, e.g. 2-3,
resulting in network P2 (still a graph).

3.  Imposing 4-consistency, hyper-arcs are
imposed on variables 1-2-3, 1-2-5 and
1-3-6, resulting in network P3 (a hyper-
graph).

4.  The primal graph of the problem is
shown as graph P4.

2 3

5 6

1

7

4 P1

2 3

5 6

1

7

4 P4

2 3

5 6

1

7

4 P3

2 3

5 6

1

7

4 P2

19 October 2015 Constraint Programming 38

Graph Width

Definition: Node width, given ordering O

 Given some total ordering, O, defined on the nodes of a graph, the width
of a node N, given ordering O is the number of lower order nodes that are
adjacent to N.

Example: For the graph and the ordering O1 shown we have
§  w(1,O1) = 0
§  w(2,O1) = 1 (node 1)
§  w(3, O1) = 2 (nodes 1 and 2)
§  w(4, O1) = 3 (nodes 1, 2 and 3)
§  w(5, O1) = 3 (nodes 1, 2 and 4)
§  w(6, O1) = 3 (nodes 1, 3 and 4)
§  w(7, O1) = 3 (nodes 4, 5 and 6)

2 3

5 6

1

7

4

19 October 2015 Constraint Programming 39

Graph Width

-  Different orderings will produce different widths for the nodes of the graphs.

Example: For the same graph but with an “inverted ordering O2, we have

§  w(1, O2) = 0
§  w(2, O2) = 1 (node 1)
§  w(3, O2) = 1 (node 1)
§  w(4, O2) = 3 (nodes 1, 2 and 3)
§  w(5, O2) = 2 (nodes 2 and 4)
§  w(6, O2) = 2 (nodes 3 and 4)
§  w(7, O2) = 5 (nodes 2, 3, 4, 5 and 6)

6 5

3 2

7

1

4

19 October 2015 Constraint Programming 40

Graph Width

-  From the width of the nodes one may obtain the width of a graph.

Definition: Graph width, given ordering O

 Given some total ordering, O, defined on the nodes of a graph, the width
of the graph, given ordering O is the maximum width of its nodes, given
ordering O.

Example: For the two orderings we obtain

2 3

5 6

1

7

4
6 5

3 2

7

1

4

W(G,O1) = 3 W(G,O2) = 5

19 October 2015 Constraint Programming 41

Graph Width

-  Now we may define the width of a graph, independent of the ordering used.

Definition: Graph width

The width of a graph is the lowest width of the graph over all possible total
orderings.

 In the example, it is easy to see that the width of the graph is 3.

2 3

5 6

1

7

4

a)  Ordering O1 assigns width 3 to the graph. Hence
the graph width is not greater than 3.

b)  A width of 2 on a graph with 7 nodes would
require the graph to have at most 0+1+5*2 = 11
edges. Hence, the width of the graph cannot be
less than 3.

c)  From a) and b) the width of graph G is 3.

19 October 2015 Constraint Programming

Tractability and i-Consistency

-  Now we can present the theorem relating k-consistency and the width of a
graph, which indirectly checks whether a problem is tractable.

Theorem: Graph width and Satisfiability

 Let a constraint satisfaction problem be modelled by a constraint network,
that after imposing k-consistency leads to a primal graph of width k-1.
Under these conditions, any ordering that assigns width k to the primal
graph is a backtrack free ordering (BTF).

Example: For the networks below assumed to be path-consistent (3-consistent)
O1 and O2 are BTF orderings, but O3 is not.

 1

2

4

3

5

6

8

7

7

8

6

5

3

4

1

2

1

5

2

4

3

6

7

8

42

19 October 2015 Constraint Programming

Tractability and i-Consistency

-  In fact, for ordering O3

1.  every label {x1-v1, x2-v2}, has a support in x3,
say {x3-v3}.

2.  But, label {x1-v1, x3-v3}, has a support in x4,
say {x4-v4}.

3.  Now, label {x3-v3, x4-v4}, has a support in x5,
say {x5-v5}.

4.  Then, label {x3-v3, x5-v5}, has a support in x6,
say {x6-v6}.

5.  And, label {x5-v5, x6-v6}, has a support in x7,
say {x7-v7}.

6.  Finally, label {x5-v5, x7-v7}, has a support in x8,
say {x8-v8}.

43

1

2

4

3

5

6

8

7

•  All things considered, label {x1-v1, x2-v2, x3-v3, x4-v4, x5-v5, x6-v6, x7-v7,x8-v8} is a
solution of the problem, and was found with no backtracking

19 October 2015 Constraint Programming

Tractability and i-Consistency

-  However, for ordering O3

§  every label {x1-v1, x2-v2}, has a support in x4,
say {x4-u4}.

§  every label {x1-v1, x3-v3}, has a support in x4,
say {x4-v4}.

1

5

2

4

3

6

7

8

-  But there is no guarantee that v4 and u4 are the same!

-  In fact, there might be no value in the domain of x4 that supports both the
assignments {x1-v1, x2-v2}, and {x1-v1, x3-v3}.

-  If this is the case, after assigning values {x1-v1, x2-v2, x3-v3}, no value exists for x4
that is compatible with these and one of them must be backktracked!}.

-  The same would happen with variable x8.

44

Graph Width

-  To take advantage of the relation between i-consistency and induced graph
width, it is still necessary to find the width of a graph or, equivalently, one optimal
ordering, i.e. one that induces a minimal width.

-  Fortunately there is a greedy algorithm (thus polinomial) that finds all optimal
orderings. The idea is very simple. Always select (nondeterministically) a node
with the least number of adjacent nodes (less degree) . Put it in the back of the
ordering, delete all the arcs leading to the node, and proceed recursively.

function min-width(G: set of Nodes, A: set of Arcs):
 Sequence of Nodes;

 if G.nodes = {n} then
 L ← [n]
 else
 n <- argN min {degree(n,G,A)}
 G1.arcs ← G.arcs \ {A: A = (_,N) ∨ A = (N,_)
 G1.nodes ← G.nodes\{N}
 L ← min-width(G1) + [n]
 end if
 min-width ← L
 end function

19 October 2015 45 Constraint Programming

19 October 2015 Constraint Programming 46

Network Consistency and Satisfiability

 •  So, in addition to

Case 1: A network of binary constraints, whose variables have only 2 values in
their domain, is satisfiable iff it can be made path-consistent.

 we have

Case 2: A network of constraints (of any arity), whose primal graph has width k is
satisfiable iff it is k+1-consistent.

1

2

4 5

3

6 7

•  For example:

2-consistency (i.e. arc-consistency) of the
constraint network guarantees the
satisfaction of the associated constraint
problem, if all constraints are binary and
the constraint graph has the topology of a
tree.

A BTF ordering proceeds from the root to
the leaves

19 October 2015 Constraint Programming 47

Arc-consistency: special purpose propagators

 Some constraints may take advantage of some special features to improve the
efficiency of their propagators.

Take for example the propagator for the n-queens problem: no_attack(i, qi, j, qj).

The usual arc-consistency would propagate the constraint (i.e. prune each of the
values in the domain of q1/q2 with no supporting value in q2/q1), whenever the
constraint is taken from the queue (assuming an AC-3 type algorithm).

However, it is easy to see that a queen with 4 values in the domain offers at least one
support value to any other queen.

In fact a queen qi can only be attacked by 3 queens from another row j. Hence the 4th
queen in row j will not attack it.

Hence, the propagator for no_attack should first check the cardinality of the domains,
and only check for supports when one of the queens have a domain with cardinality of
3 or less!

19 October 2015 Constraint Programming 48

Non-Binary Constraints: Bounds-consistency

In numerical constraints (equality and inequality constraints) it is very usual not to
impose a too demanding arc-consistency, but rather to impose mere bounds
consistency.

Take for example the simple constraint a < b over variables a and b with domains
0..1000.

In such inequality constraints, the only values worth considering for removal are
related to the bounds of the domains of these variables.

In particular, the above constraint can be compiled into

 max(a) < max(b) and min(b) < min(a)

In practice this means that the values that can be safely removed are

 all values of a above the maximum value of b;

 all values of b below the minimum value of a;

These values can be easily removed from the domains of the variables.

19 October 2015 Constraint Programming 49

Non-Binary Constraints: Bounds-consistency

It is interesting to note how this kind of consistency detects contradictions.

Take the example of a < b and b > a, two clearly unsatisfiable constraints. If the
domains of a and b are the range 1..1000, it will take about 500 iterations to detect
contradiction

 a:: 1 .. 1000, b:: 1 .. 1000 a < b → a:: 1 .. 999, b:: 2 .. 1000

 a:: 1 .. 999, b:: 2 .. 1000 a > b → a:: 3 .. 999, b:: 2 .. 998

 a:: 3 .. 999, b:: 2 .. 998 a < b → a:: 3 .. 997, b:: 4 .. 998

 a:: 3 .. 997, b:: 4 .. 998 a > b → a:: 5 .. 997, b:: 4 .. 996

 a:: 499..501, b:: 498..500 a < b → a::499..499, b::500..500

 a:: 500..500, b:: 500..500 a > b → a::501..500, b::500..499

Now, the lower bound is greater than the upper bound of the variables domains,
which indicates constradiction!

19 October 2015 Constraint Programming 50

Non-Binary Constraints: Bounds-consistency

This reasoning can be extended to more complex numerical constraints involving
numerical expressions:.

Example: a + b ≤ c

The usual compilation of this constraint is

 max(a) ≤ max(c) – min(b) to prune high values of a

 max(b) ≤ max(c) – min(a) to prune high values of b

 min(c) ≥ min(a) + min(b) to prune high values of a

Many numerical relations envolving more than two variables can be compiled this
way, so that the corresponding propagators achieve bounds consistency.

This is particularly useful when the domains are encoded not as lists of elements
but as pairs min .. max as is usually the case for numerical variables.

19 October 2015 Constraint Programming 51

Enforcing generalised arc-consistency: GAC-3

-  All algorithms for achieving arc-consistency can be adapted to achieve
generalised arc-consistency (or domain-consistency) by using a modified
version of the revise_dom predicate, that for every k-ary constraint checks
support values from each variable in the remaining k-1 variables.

predicate revise_gac(V,D, c ∈ C): boolean;
 R <- ∅;
 for xi in vars(c)
 vi in dom(Xi) do
 Y = vars(c) \ {xi} ;
 if ¬ ∃ V in dom(Y): satisfies({xi-vi, Y-V}, c) then
 dom(Xi) <- dom(xi) \ {vi};
 R <- R ∪ {i};
 end if
 end for
 revise_gac <- R;
end predicate

v

19 October 2015 Constraint Programming 52

Enforcing generalised arc-consistency: GAC-3

-  The GAC-3 algorithm is presented below, as an adaptation of AC-3.

-  Any time a value is removed from a variable Xi, all constraints that have this
variable in the scope are placed back in the queue for assessing their local
consistency.

procedure AC-3(V, D, C);
 NC-1(V,D,C); % node consistency
 Q = { c | c ∈ C};
 while Q ≠ ∅ do
 Q = Q \ {c} % removes an element from Q
 for i in revise_gac(V,D, c ∈ C) do % revised xi
 Q = Q ∪ {r | r ∈ C ∧ i ∈ vars(r) ∧ r ≠ c }
 end if
 end while
end procedure

19 October 2015 Constraint Programming 53

Complexity of GAC-3

Time Complexity of GAC-3: O(a k2 dk+1)

-  Every time that an hyper-arc/n-ary constraint is removed from the queue Q,
predicate revise_gac is called, to check at most k*dk tuples of values.

-  In the worst case, each of the a constraints is placed into the queue at most
k*d times.

-  All things considered, the worst case time complexity of GAC-3, is O(kdk*a*kd)

O(a k2 dk+1)

-  Of course, when all the constraint are binary the complexity of GAC-3 is the
same of AC-3, i.e.

O(a d3)

19 October 2015 Constraint Programming 54

Constraint Propagation

Generalised arc-consistency provides a scheme for an architecture of constraint
solvers, even when constraints are not binary.

For every constraint a number of propagators are considered. In general, each
propagator:

-  affects one variable (aiming at narrowing its domain, when invoked);

-  Is triggered by some events, namely some change in the domain of some
variable;

For example, the posting of the constraint c :: x + y = z creates 3 propagators

Px: x ß y – z ; Py: y ß z – x ; Pz: z ß x + y

Propagator Px (likewise for propagators Py and Pz) is triggered by some change in
the domain of variables y or z.

When executed it (possibly) narrows the domain of x. If this becomes empty, a
failure is detected and backtracks is enforced.

19 October 2015 Constraint Programming 55

Constraint Propagation

The life cycle of such propagators can be schematically represented as follows:
1.  Propagators are created when the corresponding constraint is posted. They

are enqueued and become ready for execution.
2.  When they reach the front of the queue they are executed. Upon execution the

domain of the propagator variable is possibly narrowed.
3.  If the domain is empty, backtracking occurs, and after trailing, the propagator

is put back in the queue.
4.  Otherwise, the propagator stays waiting for a triggering event.
5.  When one such event occurs the propagator is enqueued . While enqueued,

other triggering events are possibly “merged” in the queue.

Wait

4. success

3. backtrack
Execute

2. dequeue 1. post

Queue
5. triggered

19 October 2015 Constraint Programming 56

Constraint Propagation

Px: x ß y – z ; Py: y ß z – x ; Pz: z ß x + y

Propagators aim at maintaining some form of consistency, typically domain
consistency or bounds consistency, This has a direct influence on the events that
trigger them.

For example, with bounds consistency, propagator Px is triggered when the
maximum or minimum values in the domain of variables y and z is changed.
These are the only events that change the maximum and minimum values of the
domain of variable x.

In contrast, if domain consistency is maintained, propagator Px is triggered
whenever any value is removed from the domain of any of the variables y or z,
since these removals may end the support of some value in the domain of x.

This also means that sometimes the activation of the propagator does not lead to
the removal of any value in the domain. For example value 3 in x may be
supported by either values 5 and 2, or by values 7 and 4 for variables y and z. If 7
is removed from the domain of y, x= 3 still has support in y and z.

19 October 2015 Constraint Programming 57

Generalised arc-consistency: Global Constraints

The time complexity of generalised arc consistency for n-ary constraints may be too
costly. Consider the case of k variables that all have to take different values.

x1 ≠ x2, x1 ≠ x3 ... x1 ≠ xk ... xk-1 ≠ xk

These k(k-1)/2 binary constraints can be replaced by a single k-ary constraint

all_diffferent(x1 , x2, x3 , .. , xk)

However, checking the consistency of such constraint by the naïve method
presented, would have complexity O(a k2 dk+1) , i.e. O(k4 dk+1).

This is why, some very widely used n-ary constraints are dealt with as global
constraints, for which special purpose, and much faster, algorithms exist to check
the constraint consistency.

In the all_different constraint, an algorithm based in graph theory enforces this
checking with complexity O(d k3/2), much better than the naïve version.

For example for d ≈ k ≈ 9 (sudoku problem!) the number of checks is reduced from
92*910 ≈ 3*1010 to a much more acceptable number of 9* 93/2 ≈ 243.

