Constraint Programming

2021/2022 - Mini-Test \#2

Monday, 3 January, 9:00 h in 127-Ed.II
Duration: 1.5 h (open book)

The motion of a projectile through the air that is subject only to the acceleration of gravity ($\mathrm{g}=9.81 \mathrm{~ms}^{-2}$) is represented in the figure bellow.

Given the launch angle α (radians) and the initial velocity $v_{0}\left(\mathrm{~ms}^{-1}\right)$, the projectile follows a parabolic trajectory represented by the following equation:

$$
y=(\tan \alpha) x-\frac{\mathrm{g}}{2 v_{0}^{2}(\cos \alpha)^{2}} x^{2}
$$

1. Interval Arithmetic

The horizontal range r of the projectile is the horizontal distance it has traveled when it returns to its initial height $(y=0)$. Given the initial velocity $v_{0}=10$, and solving the above equation with respect to x, the horizontal range r can be computed as a function of α :

$$
r=f(\alpha)=\frac{2 v_{0}^{2}}{\mathrm{~g}}(\sin \alpha)(\cos \alpha)
$$

In the following questions assume that $v_{0}=10 \mathrm{~ms}^{-1}$ and $g=9.81 \mathrm{~ms}^{-2}$.
1.1. Define $F_{n}(I)$ the natural interval extension of f.
1.2. Define $F_{c}(I)$ the mean value extension of f over the interval $\left[\frac{\pi}{6}, \frac{\pi}{3}\right]$ centered at the midpoint. Some derivative rules:

$$
\begin{aligned}
& (f(x) \times g(x))^{\prime}=f(x) \times(g(x))^{\prime}+(f(x))^{\prime} \times g(x) \\
& (\sin x)^{\prime}=(\cos x) \\
& (\cos x)^{\prime}=-(\sin x)
\end{aligned}
$$

1.3. Given that: $2(\sin \alpha)(\cos \alpha)=\sin 2 \alpha$

Define $F_{r}(I)$ that computes the sharpest enclosure of the range of f for any $I \subseteq\left[\frac{\pi}{6}, \frac{\pi}{3}\right]$.
1.4. Compute $F_{n}\left(\left[\frac{\pi}{6}, \frac{\pi}{3}\right]\right), F_{c}\left(\left[\frac{\pi}{6}, \frac{\pi}{3}\right]\right)$ and $F_{r}\left(\left[\frac{\pi}{6}, \frac{\pi}{3}\right]\right)$.
1.5. From the results obtained in 1.4 what can you conclude about the truth value of the following propositions? (Justify your answers)
a. $\quad \exists \frac{\pi}{6} \leq \alpha \leq \frac{\pi}{3} f(\alpha)=8$
b. $\exists \frac{\pi}{6} \leq \alpha \leq \frac{\pi}{3} f(\alpha)=10$

2. Interval Newton

Consider the function: $h(\alpha)=r-\frac{2 v_{0}^{2}}{\mathrm{~g}}(\sin \alpha)(\cos \alpha)$
Notice that when $h(\alpha)=0$, the projectile launched with an angle α radians and initial velocity $v_{0} \mathrm{~ms}^{-1}$, reach the horizontal range r.
2.1. Define the interval Newton function with respect to h (do not assign values to v_{0} and r).
2.2. Use the Newton function to prove that with an initial velocity of $10 \mathrm{~ms}^{-1}$ there is no angle α between $\frac{\pi}{6}$ and $\frac{\pi}{3}$ to obtain a trajectory range smaller than 5 m .
2.3. Use the Newton function to prove that with an initial velocity of $10 \mathrm{~ms}^{-1}$ there is an angle α between $\frac{\pi}{6}$ and $\frac{\pi}{5}$ to obtain a trajectory range of 9 m and compute an interval enclosure of such angle with width not larger than 0.02 radians.

3. Constraint Propagation

Consider the constraint below obtained from the trajectory equation with angle $\alpha=\frac{\pi}{4}$ radians:

$$
y=x-9.81\left(\frac{x}{v_{0}}\right)^{2}
$$

3.1. Is the constraint box-consistent in box $B\left[x, y, v_{0}\right]=[4,5] \times[2,3] \times[9,10]$?
3.2. Is the constraint hull-consistent in box $B\left[x, y, v_{0}\right]=[4,5] \times[2,3] \times[9,10]$?
3.3. Can you reduce box B by applying HC4-revise to the constraint? Justify.
3.4. Apply HC4-revise to the constraint with an initial box $B^{\prime}\left[x, y, v_{0}\right]=[4] \times[2,3] \times[8,10]$.
3.5. What is the box obtained by applying BC3-revise to the constraint with the same initial box B^{\prime} '?

