
 Constraint Programming Mini-Test #1 - 2021/22 1 / 4

Constraint Programming

2021/2022– Mini-Test #1

Monday, 15 November, 9:00 h, Room 127-II

Duration: 1.5 h (open book)

1. Finite domain Constraints - Propagation (6 pts)

Consider the constraint network on the right, where nodes represent

variables, all with domain {1,2,3}, and the arcs constraints of

difference (“=”).

a) (1 pt.) Show that the problem is not satisfiable.

b) (2 pt.) What pruning is achieved if node-consistency is maintained? And arc-consistency?

c) (2 pt.) Show that there are implicit constraints of equality (e.g., A = C) induced by the original

constraints. Would maintaining path-consistency detect such constraints? And maintaining 4-

consistency?

d) (1 pt.) What implicit equality constraints would remain if variable A would have domain {0,1,2,3}.

Would these equalities impose the grounding of any variable (i.e. assigning it a fixed value).

Proposed Solution

a) The problem is not satisfiable. Variable F should take one of the values 1, 2 or 3, and hence ther

are only two values left for the remaining variables. For example, for F = 3, the remaining variables

must have values 1 or 2. But it is easy to see that if A takes one of the values, say A = 1, then B

must be different from A (say B=2), C must be different from B, and hence C = A, D must be

different from C , i.e. D =B ≠ A, and E must be different from D, i.e. equal to C and A. But this is

not possible, since it should be A ≠ E.

b) There are no unary constraints, so node-consistency does not prune any values from the variables’

domains. All variables have at least 2 values in their domains, so maintaining arc-consistency on

≠ constraints, say X ≠ Y, does not prune any values from the variables, since any value from X

has at least one support (a different value) in Y.

c) takes the F tasatisfiable, and has two solutions:

• The >4 constraints prune the domains of variables a, b, d and e to the set {1,6}, and a ≠b;

• The =2 constrain variables a and e to have the same parity (in fact a difference of 0 or 4).

• Hence, a must be equal to e and, likely, b must be equal to d.

• Hence the solutions are

• S1: a = e = 1, f = 3, b = d = 6, c = 4; and

• S2: a = e = 6, f = 4, b = d = 1, c = 3.

d) Node-consistency does not prune any domain since there are no unary constraints.

Bounds consistency does not prune any of the domains since the bounds of the domain of all

variables have support on the other connected variables. For example, a = 1 has support on b = 6

and c = 3; a = 6 has support on b = 1 and c = 4. Hence the domain of a is not pruned. And the

same applies to variables b, d and e. Regarding variable c, its upper bound 6 has support on b = 4

and d = 4, and its lower bound 1 has support in b = 3 and d = 3, and the same applies to f.

 Constraint Programming Mini-Test #1 - 2021/22 2 / 4

Arc-consistency removes values 2,3,4 and 5 from the domain of a, as they have no support on b,

and the same applies to b. Hence variables a, b, d and e have their domain reduced to {1,6}. And

these pruned domains imply, in turn, that variables c and f have their domains pruned to {3,4}.

e) Path consistency imposes that variables a and e have a difference of either 0 or 4. With their

domains pruned to {1,6}, this means that arc-consistency would infer that a = e (and b = d).

f) Given the vertical symmetry of the problem, a constraint a ≥ b should eliminate solution S1, that

can be inferred from S2 changing a  b, d  e, and c  f.

2. Global Constraints (5 pts)

Consider a global constraint that given an array of decision variables imposes that they are shuffled

into another array according to a given index mapping. For example, given a mapping M, the decision

variables of vector B should be obtained by mapping the variables from vector A according to M, i.e.

B[i] = A[M[i]]). For example, for M = {1,2,0} we should have

B[0] = A[1], B[1] = A[2] and B[2] = A[0].

a) (2pt.) Implement in Choco this constraint in a function shuffle with signature

public static void shuffle (Model md, IntVar [] S, IntVar [] M, IntVar [] T)

Suggestion: Consider the global constraint element available in Choco.

b) (3 pt.) Assuming you are given two arrays with n decision variables representing the starting

times (S) and durations (D) of n tasks, use the shuffle constraint to complete the code below so

as to constrain the tasks to be executed with no overlaps nor gaps between them.

n = ...;

IntVar [] S = md.intVarArray(n, sLo, sUp); // the starting times

IntVar [] D = md.intVarArray(n, dLo, dUp); // the duration

...

Proposed Solution

a) To implement this constraint, we have to consider that the mapping array contains the indices

of the tasks so as to have them sorted, i.e. for all i’s such B[i] = A[M[i]]. Since these

constraints require to use decision variables as indices of array A, the element constraint can be

used as:

 function void shuffle (Model md, IntVar [] A, IntVar [] M, int [] B){

 for (int i = 0; i < S.length; i++){

 md.element(B[i], A, M[i], 0).post();

 }

b) Given the array of decision variables representing the tasks, all that is needed is to sort the tasks

such that the ending of the mapped tasks is the same as the starting times of the sorted tasks.

The mapping should guarantee that all indices are used. Hence,

n = ...;

IntVar [] S = md.intVarArray(n, sLo, sUp); // the starting times

IntVar [] D = md.intVarArray(n, dLo, dUp); // the durations

IntVar [] Sm = md.intVarArray(n, sLo, sUp); // mapped starts

IntVar [] Dm = md.intVarArray(n, dLo, dUp); // mapped durations

IntVar [] M = md.intVarArray(n, 0, n-1); // a mapping

 Constraint Programming Mini-Test #1 - 2021/22 3 / 4

md.allDifferent(M).post(); // constrain the mapping

shuffle (md, S, M, Sm); // obtain the mapped starts

shuffle (md, D, M, Dm); // obtain the mapped durations

for (int i = 0; i < n-1; i++) {

md.arithm(Sm[i], “+”, Dm[i], “=”, Sm[i+1]). post();

}

3. Modelling with Finite Domain Constraints (9 pts)

Graph Colouring Variant

Given a graph, the standard Graph Colouring problem consists of

finding a colouring of the nodes such that any two adjacent nodes

have different colours, and:

(SAT) using only colours of a set {1, 2, ..., n}; or

(OPT) minimizing the number of colours n.

Here we want to model a variant of this problem, assuming that there is an extra colour, 0, that satisfies

any constraint of difference (i.e., 0≠k, or k≠0 is satisfied, for any value of k, including k = 0).

The figure shows a solution with 4 colours (1 to 4) and no zeros. However, if only 2 colours, plus 0s

are acceptable a minimal solution would require that at least two nodes A and E take value 0, and this

is an optimal solution (there is no solution with colours {0,1,2} that uses less than 2 zeros).

The problem you should model is a mixed problem, such as to minimize the number of 0s in a

colouring of the graph with colours in the set {0, 1, ..., n}.

Assume that the graph is given as the adjacency matrix (a Boolean matrix where a 1 represents a

connection between the corresponding nodes). For the graph, the matrix would be (each row

represents a node)

G = {{0,1,1,1,1,0}, {1,0,0,1,1,0}, {1,0,0,0,1,1}, {1,1,0,0,1,0}, {1,1,1,1,0,1}, {0,0,1,0,1,0}}

a) (2 pt.) Specify a model for this problem in Choco. More precisely, declare the decision variables

you chose as well as their domains, together with the model and solver you propose.

b) (4 pt.) (SAT) What constraints would you consider to modelling the satisfaction problem, i.e., to

find a solution that satisfies the problem (i.e., only uses the colours from 0 to n)? Remember : A

zero is considered different from any colour, including the 0.

c) (3 pt.) (OPT) Complete the optimisation problem, i.e., to model a problem that aims at minimising

the number of 0s in the solution.

Proposed Solution:

a) We consider an array C of decision variables, representing the nodes of the graph. The

domains of the variables, the allowed colours to label the nodes are the range 0..n.

The choco code may thus be

 int [][] G = {...}; // given

 int n = G.length;

 Constraint Programming Mini-Test #1 - 2021/22 4 / 4

 Model md = new Model();

 Solver sv = md.getSolver();

 IntVar [] C= md.intVarArray(“N”, n, 0, n);

b) First we have to define a constraint on any nodes x, y that imposes they have different colours, or

one of the colours is 0. This can be specified as

 md.or(md.arithm(x, “≠”, y), md.arithm(X, “*”, Y, “=”, 0))

Now, we must post an instance of this constraint on any two adjacent nodes:

 for (int i = 0; x < n; x++)

 for (int y = x+1; y <= n; y++)

 if (G[i,j]){

 md.or(md.arithm(C[i], ‘≠’, C[j]), md.arithm(C[i], ‘*’, C[j], ‘=’, 0))

c) Now we have to “count” the number of 0s. We may use the predefined constraint count(v,A,c) that

constrains the number of elements of the intVarArray A that take value v to be equal to intVar c.

Hence we should declare a intVar variable c

 IntVar cnt = md.intVar (“c”, n+1, 0, n);

Then post the constraint

 md.count(0, C, cnt).post()

 and set the minimisation objective by invoking the model method

 md.setObjective(Model.MINIMIZE, cnt);

	1. Finite domain Constraints - Propagation (6 pts)
	2. Global Constraints (5 pts)
	3. Modelling with Finite Domain Constraints (9 pts)

