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Constraint Programming 

2021/2022– Mini-Test #1 

Monday, 15 November, 9:00 h, Room 127-II 

Duration: 1.5 h (open book) 

1. Finite domain Constraints - Propagation (6 pts)  

Consider the constraint network on the right, where nodes represent 

variables, all with domain {1,2,3}, and the arcs constraints of 

difference (“=”). 

a) (1 pt.) Show that the problem is not satisfiable.  

b) (2 pt.) What pruning is achieved if node-consistency is maintained? And arc-consistency? 

c) (2 pt.) Show that there are implicit constraints of equality (e.g., A = C) induced by the original 

constraints. Would maintaining path-consistency detect such constraints? And maintaining 4-

consistency? 

d) (1 pt.) What implicit equality constraints would remain if variable A would have domain {0,1,2,3}. 

Would these equalities impose the grounding of any variable (i.e. assigning it a fixed value). 

Proposed Solution 

a) The problem is not satisfiable. Variable F should take one of the values 1, 2 or 3, and hence ther 

are only two values left for the remaining variables. For example, for F = 3, the remaining variables 

must have values 1 or 2. But it is easy to see that if A takes one of the values, say A = 1, then B 

must be different from A (say B=2), C must be different from B, and hence C = A, D must be 

different from C , i.e. D =B ≠ A, and E must be different from D, i.e. equal to C and A. But this is 

not possible, since it should be A ≠ E. 

b)  There are no unary constraints, so node-consistency does not prune any values from the variables’ 

domains. All variables have at least 2 values in their domains, so maintaining arc-consistency on 

≠ constraints, say X ≠ Y, does not prune any values from the variables, since any value from X 

has at least one support (a different value) in Y.  

c)  takes the F tasatisfiable, and has two solutions: 

• The >4 constraints prune the domains of variables a, b, d and e to the set {1,6}, and a ≠b; 

• The =2 constrain variables a and e to have the same parity (in fact a difference of 0 or 4). 

• Hence, a must be equal to e and, likely, b must be equal to d. 

• Hence the solutions are 

• S1: a = e = 1, f = 3, b = d = 6, c = 4; and  

• S2: a = e = 6, f = 4, b = d = 1, c = 3.  

d) Node-consistency does not prune any domain since there are no unary constraints.  

Bounds consistency does not prune any of the domains since the bounds of the domain of all 

variables have support on the other connected variables. For example, a = 1 has support on b = 6 

and c = 3; a = 6 has support on b = 1 and c = 4. Hence the domain of a is not pruned. And the 

same applies to variables b, d and e. Regarding variable c, its upper bound 6 has support on b = 4 

and d = 4, and its lower bound 1 has support in b = 3 and d = 3, and the same applies to f. 
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Arc-consistency removes values 2,3,4 and 5 from the domain of a, as they have no support on b, 

and the same applies to b. Hence variables a, b, d and e have their domain reduced to {1,6}. And 

these pruned domains imply, in turn, that variables c and f have their domains pruned to {3,4}. 

e) Path consistency imposes that variables a and e have a difference of either 0 or 4. With their 

domains pruned to {1,6}, this means that arc-consistency would infer that a = e (and b = d). 

f) Given the vertical symmetry of the problem, a constraint a ≥ b should eliminate solution S1, that 

can be inferred from S2 changing a  b, d  e, and c  f. 

 

2. Global Constraints (5 pts) 

Consider a global constraint that given an array of decision variables imposes that they are shuffled 

into another array according to a given index mapping. For example, given a mapping M, the decision 

variables of vector B should be obtained by mapping the variables from vector A according to M, i.e. 

B[i] = A[M[i]]). For example, for M = {1,2,0} we should have 

B[0] = A[1], B[1] = A[2] and B[2] = A[0]. 

a) (2pt.) Implement in Choco this constraint in a function shuffle with signature 

public static void shuffle (Model md, IntVar [] S, IntVar [] M, IntVar [] T) 

Suggestion: Consider the global constraint element available in Choco. 

 

b) (3 pt.) Assuming you are given two arrays with n decision variables representing the starting 

times (S) and durations (D) of n tasks, use the shuffle constraint to complete the code below so 

as to constrain the tasks to be executed with no overlaps nor gaps between them. 

n = ...; 

IntVar [] S = md.intVarArray(n, sLo, sUp); // the starting times 

IntVar [] D = md.intVarArray(n, dLo, dUp); // the duration 

... 

Proposed Solution 

a) To implement this constraint, we have to consider that the mapping array contains the indices 

of the tasks so as to have them sorted, i.e. for all i’s such B[i] = A[M[i]]. Since these 

constraints require to use decision variables as indices of array A, the element constraint can be 

used as: 

 

 function void shuffle (Model md, IntVar [] A, IntVar [] M, int [] B){ 

  for (int i = 0; i < S.length; i++){ 

   md.element(B[i], A, M[i], 0).post(); 

  } 

b) Given the array of decision variables representing the tasks, all that is needed is to sort the tasks 

such that the ending of the mapped tasks is the same as the starting times of the sorted tasks. 

The mapping should guarantee that all indices are used. Hence, 

 

n = ...; 

IntVar [] S  = md.intVarArray(n, sLo, sUp); // the starting times 

IntVar [] D  = md.intVarArray(n, dLo, dUp); // the durations 

 

IntVar [] Sm = md.intVarArray(n, sLo, sUp); // mapped starts 

IntVar [] Dm = md.intVarArray(n, dLo, dUp); // mapped durations 

IntVar [] M  = md.intVarArray(n, 0, n-1);   // a mapping 
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md.allDifferent(M).post(); // constrain the mapping  

shuffle (md, S, M, Sm);  // obtain the mapped starts 

shuffle (md, D, M, Dm);  // obtain the mapped durations 

 

for (int i = 0; i < n-1; i++) { 

md.arithm(Sm[i], “+”, Dm[i], “=”, Sm[i+1]). post(); 

}   

3. Modelling with Finite Domain Constraints (9 pts) 

Graph Colouring Variant 

Given a graph, the standard Graph Colouring problem consists of 

finding a colouring of the nodes such that any two adjacent nodes 

have different colours, and: 

(SAT) using only colours of a set {1, 2, ..., n}; or 

(OPT) minimizing the number of colours n.  

Here we want to model a variant of this problem, assuming that there is an extra colour, 0, that satisfies 

any constraint of difference (i.e., 0≠k, or k≠0 is satisfied, for any value of k, including k = 0).  

The figure shows a solution with 4 colours (1 to 4) and no zeros. However, if only 2 colours, plus 0s 

are acceptable a minimal solution would require that at least two nodes A and E take value 0, and this 

is an optimal solution (there is no solution with colours {0,1,2} that uses less than 2 zeros). 

The problem you should model is a mixed problem, such as to minimize the number of 0s in a 

colouring of the graph with colours in the set {0, 1, ..., n}.   

Assume that the graph is given as the adjacency matrix (a Boolean matrix where a 1 represents a 

connection between the corresponding nodes). For the graph, the matrix would be (each row 

represents a node) 

G = {{0,1,1,1,1,0}, {1,0,0,1,1,0}, {1,0,0,0,1,1}, {1,1,0,0,1,0}, {1,1,1,1,0,1}, {0,0,1,0,1,0}} 

a) (2 pt.) Specify a model for this problem in Choco. More precisely, declare the decision variables 

you chose as well as their domains, together with the model and solver you propose.  

b) (4 pt.) (SAT) What constraints would you consider to modelling the satisfaction problem, i.e., to 

find a solution that satisfies the problem (i.e., only uses the colours from 0 to n)? Remember : A 

zero is considered different from any colour, including the 0. 

c) (3 pt.) (OPT) Complete the optimisation problem, i.e., to model a problem that aims at minimising 

the number of 0s in the solution. 

Proposed Solution: 

a) We consider an array C of decision variables, representing the nodes of the graph. The 

domains of the variables, the allowed colours to label the nodes are the range 0..n. 

The choco code may thus be 

 int [][] G = {...}; // given 

 int n = G.length; 
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 Model md = new Model(); 

 Solver sv = md.getSolver(); 

 IntVar [] C= md.intVarArray(“N”, n,  0, n); 

 

b) First we have to define a constraint on any nodes x, y that imposes they have different colours, or 

one of the colours is 0. This can be specified as 

 md.or(md.arithm(x, “≠”, y), md.arithm(X, “*”, Y, “=”, 0)) 

 

Now, we must post an instance of this constraint on any two adjacent nodes: 

 for (int i = 0; x < n; x++) 

  for (int y = x+1; y <= n; y++) 

   if (G[i,j]){ 

    md.or(md.arithm(C[i], ‘≠’, C[j]), md.arithm(C[i], ‘*’, C[j], ‘=’, 0)) 

  

c) Now we have to “count” the number of 0s. We may use the predefined constraint count(v,A,c) that 

constrains the number of elements of the intVarArray A that take value v to be equal to intVar c. 

Hence we should declare a intVar variable c 

   IntVar cnt = md.intVar (“c”, n+1,  0, n); 

 

Then post the constraint 

 md.count(0, C, cnt).post() 

 

   and set the minimisation objective by invoking the model method 

  md.setObjective(Model.MINIMIZE, cnt); 
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