Constraint Programming

2021/2022- Mini-Test \#1
Monday, 15 November, 9:00 h, Room 127-II
Duration: 1.5 h (open book)

1. Finite domain Constraints - Propagation (6 pts)

Consider the constraint network on the right, where nodes represent variables, all with domain $\{\mathbf{1 , 2 , 3}\}$, and the arcs constraints of difference ("=").
a) ($\mathbf{1} \mathbf{p t}$.) Show that the problem is not satisfiable.

b) ($2 \mathbf{p t}$.) What pruning is achieved if node-consistency is maintained? And arc-consistency?
c) ($\mathbf{2} \mathbf{~ p t .) ~ S h o w ~ t h a t ~ t h e r e ~ a r e ~ i m p l i c i t ~ c o n s t r a i n t s ~ o f ~ e q u a l i t y ~ (e . g . , ~} \mathrm{A}=\mathrm{C}$) induced by the original constraints. Would maintaining path-consistency detect such constraints? And maintaining 4consistency?
d) (1 pt.) What implicit equality constraints would remain if variable A would have domain $\{0,1,2,3\}$. Would these equalities impose the grounding of any variable (i.e. assigning it a fixed value).

2. Global Constraints ($\mathbf{5} \mathbf{~ p t s}$)

Consider a global constraint that given an array of decision variables imposes that they are shuffled into another array according to a given index mapping. For example, given a mapping M , the decision variables of vector B should be obtained by mapping the variables from vector A according to M, i.e. $B[i]=A[M[i]])$. For example, for $M=\{1,2,0\}$ we should have

$$
\mathrm{B}[0]=\mathrm{A}[1], \mathrm{B}[1]=\mathrm{A}[2] \text { and } \mathrm{B}[2]=\mathrm{A}[0] .
$$

a) (2pt.) Implement in Choco this constraint in a function shuffle with signature

```
public static void shuffle (Model md, IntVar [] S, IntVar [] M, IntVar [] T)
```

Suggestion: Consider the global constraint element available in Choco.
b) ($\mathbf{3} \mathbf{p t}$.) Assuming you are given two arrays with \mathbf{n} decision variables representing the starting times (\mathbf{S}) and durations (\mathbf{D}) of \mathbf{n} tasks, use the shuffle constraint to complete the code below so as to constrain the tasks to be executed with no overlaps nor gaps between them.

```
n = ...;
IntVar [] S = md.intVarArray(n, sLo, sUp); // the starting times
IntVar [] D = md.intVarArray(n, dLo, dUp); // the duration
```


3. Modelling with Finite Domain Constraints (9 pts)

Graph Colouring Variant

Given a graph, the standard Graph Colouring problem consists of finding a colouring of the nodes such that any two adjacent nodes have different colours, and:
(SAT) using only colours of a set $\{\mathbf{1}, \mathbf{2}, \ldots, \mathbf{n}\}$; or
(OPT) minimizing the number of colours \mathbf{n}.

Here we want to model a variant of this problem, assuming that there is an extra colour, $\mathbf{0}$, that satisfies any constraint of difference (i.e., $\mathbf{0} \neq \mathbf{k}$, or $\mathbf{k} \neq \mathbf{0}$ is satisfied, for any value of \mathbf{k}, including $\mathbf{k}=\mathbf{0}$).

The figure shows a solution with 4 colours (1 to 4) and no zeros. However, if only $\mathbf{2}$ colours, plus 0 s are acceptable a minimal solution would require that at least two nodes A and E take value 0 , and this is an optimal solution (there is no solution with colours $\{\mathbf{0 , 1 , 2 \}}$ that uses less than 2 zeros).

The problem you should model is a mixed problem, such as to minimize the number of 0 s in a colouring of the graph with colours in the set $\{\mathbf{0}, \mathbf{1}, \ldots, \mathbf{n}\}$.

Assume that the graph is given as the adjacency matrix (a Boolean matrix where a 1 represents a connection between the corresponding nodes). For the graph, the matrix would be (each row represents a node)

$$
\mathbf{G}=\{\{\mathbf{0 , 1 , 1 , 1 , 1 , 0}\},\{1,0,0,1,1,0\},\{1, \mathbf{0}, \mathbf{0}, \mathbf{0}, 1,1\},\{\mathbf{1 , 1 , 0 , 0 , 1 , 0}\},\{\mathbf{1 , 1 , 1 , 1 , 0 , 1}\},\{\mathbf{0 , 0 , 1 , 0 , 1 , 0}\}\}
$$

a) ($\mathbf{2} \mathbf{p t}$.) Specify a model for this problem in Choco. More precisely, declare the decision variables you chose as well as their domains, together with the model and solver you propose.
b) ($\mathbf{4} \mathbf{~ p t .) ~ (S A T) ~ W h a t ~ c o n s t r a i n t s ~ w o u l d ~ y o u ~ c o n s i d e r ~ t o ~ m o d e l l i n g ~ t h e ~ s a t i s f a c t i o n ~ p r o b l e m , ~ i . e . , ~ t o ~}$ find a solution that satisfies the problem (i.e., only uses the colours from 0 to n)? Remember : A zero is considered different from any colour, including the 0 .
c) ($\mathbf{3} \mathbf{~ p t .) ~ (O P T) ~ C o m p l e t e ~ t h e ~ o p t i m i s a t i o n ~ p r o b l e m , ~ i . e . , ~ t o ~ m o d e l ~ a ~ p r o b l e m ~ t h a t ~ a i m s ~ a t ~ m i n i m i s i n g ~}$ the number of 0 s in the solution.

