Constraint Programming
 2020/2021 - Mini-Test \#2

Monday, 11 January, 9:00 h in 204-Ed.II
Duration: 1.5 h (open book)

1. Interval Arithmetic

Consider the univariate polynomial function expressed in the standard form as:

$$
f(x)=x^{3}-7 x-6
$$

1.1. Define the mean value extension of f over the interval $[-3 / 2,-1 / 2]$ centered at the midpoint.

$$
\begin{aligned}
& F_{c}(x)=f(c)+F^{\prime}([a, b]) \times(x-c) \\
& {[a, b]=[-3 / 2,-1 / 2]} \\
& c=\frac{-3 / 2-1 / 2}{2}=-1 \\
& f(c)=c^{3}-7 c-6=(-1)^{3}-7(-1)-6=-1+7-6=0 \\
& F^{\prime}([a, b])=3[a, b]^{2}-7=3[-3 / 2,-1 / 2]^{2}-7=3[1 / 4,9 / 4]-7=[-25 / 4,-1 / 4] \\
& F_{c}(x)=[-25 / 4,-1 / 4] \times(x+1)
\end{aligned}
$$

1.2. Let $I=[-1-w,-1+w]$ with $w=1 / 2$. Compute enclosures for the range of $f(I)$ with:
a. the standard form;
b. the centered form defined in 1.1
a. standard form:

$$
\begin{aligned}
f([-3 / 2,-1 / 2]) & =[-3 / 2,-1 / 2]^{3}-7[-3 / 2,-1 / 2]-6 \\
& =[-27 / 8,-1 / 8]-[-21 / 2,-7 / 2]-6 \\
& =[-27 / 8,-1 / 8]+[-5 / 2,9 / 2] \\
& =[-47 / 8,35 / 8] \\
& =[-5.875,4.375]
\end{aligned}
$$

b. centered form:

$$
\begin{aligned}
f([-3 / 2,-1 / 2]) & =[-25 / 4,-1 / 4] \times([-3 / 2,-1 / 2]+1) \\
& =[-25 / 4,-1 / 4] \times[-1 / 2,1 / 2] \\
& =[-25 / 8,25 / 8] \\
& =[-3.125,3.125]
\end{aligned}
$$

1.3. Prove that for any positive $w \leq 1 / 2$ the enclosure for the range of $f([-1-w,-1+w])$ obtained with the centered form is sharper that the obtained with the standard form.
a. standard form: $\operatorname{width}(f([-1-w,-1+w]))$

$$
\begin{aligned}
& =\operatorname{width}\left([-1-w,-1+w]^{3}\right)+\operatorname{width}(-7[-1-w,-1+w])+0 \\
& =\operatorname{width}\left([-1-w,-1+w]^{3}\right)+\operatorname{width}([7-7 w, 7+7 w]) \\
& =\operatorname{width}\left([-1-w,-1+w]^{3}\right)+14 w>14 w
\end{aligned}
$$

b. centered form: $\operatorname{width}(f([-1-w,-1+w]))$

$$
\begin{aligned}
& =\text { width }([-25 / 4,-1 / 4] \times([-1-w,-1+w]+1)) \\
& =\operatorname{width}([-25 / 4,-1 / 4] \times([-w,+w])) \\
& =\operatorname{width}([-25 w / 4,25 w / 4])=50 w / 4=12.5 w
\end{aligned}
$$

\therefore for any positive $w \leq 1 / 2$: width centered form $=12.5 \mathrm{w}<14 \mathrm{w}<$ width standard form
1.4. Define an algorithm that based on the monotonicity of f computes a sharp enclosure of the range of the function for any interval $[a, b]$.

$$
f^{\prime}(x)=3 x^{2}-7
$$

the roots of the derivative are: $-\sqrt{7 / 3}$ and $+\sqrt{7 / 3}$
Algorithm that returns a sharp enclosure of $f([a, b])$:

$$
\begin{aligned}
& I \leftarrow f([a]) \biguplus f([b]) \\
& \text { if }(a<-\sqrt{7 / 3}<b): I \leftarrow I \biguplus f([-\sqrt{7 / 3}]) \\
& \text { if }(a<+\sqrt{7 / 3}<b): I \leftarrow I \biguplus f([+\sqrt{7 / 3}]) \\
& \text { return } I
\end{aligned}
$$

2. Interval Newton

Consider the polynomial of the previous question: $f(x)=x^{3}-7 x-6$
2.1. Define the interval Newton function for the polynomial.

$$
\begin{array}{lll}
N([a, b])=c-\frac{f(c)}{F^{\prime}([a, b])} & \text { with } & c=\frac{a+b}{2} \\
f(c)=c^{3}-7 c-6 & & \\
F^{\prime}([a, b])=3[a, b]^{2}-7 & & \\
\therefore N([a, b])=c-\frac{c^{3}-7 c-6}{3[a, b]^{2}-7} & \text { with } & c=\frac{a+b}{2}
\end{array}
$$

2.2. Use the interval Newton method to compute an interval enclosure of the smallest root of the polynomial within $[-3,0]$. The enclosure must be certified (proved that contains a root) and sharp (width cannot exceed 0.05).

The procedure starts with the initial interval and successively applies the newton function to narrow the leftmost interval that may contain a root. It stops when it proves that an interval smaller that 0.05 contains a root.

All the roots within the initial interval $[-3,0]$ must be in $[-3,0] \cap N([-3,0])$

$$
\begin{aligned}
N([-3,0]) & =-\frac{3}{2}-\frac{-\frac{27}{8}+\frac{21}{2}-6}{3[0,9]-7}=-\frac{3}{2}-\frac{\frac{9}{8}}{[-7,20]}=-\frac{3}{2}-\left(\left[-\infty,-\frac{9}{56}\right] \cup\left[\frac{9}{160},+\infty\right]\right) \\
& =\left(\left[-\frac{75}{56},+\infty\right] \cup\left[-\infty,-\frac{249}{160}\right]\right)=[-\infty,-1.55625] \cup[-1.33929,+\infty]
\end{aligned}
$$

\therefore if there are roots in $[-3,0]$ they must be in:

$$
[-3,0] \cap([-\infty,-1.55625] \cup[-1.33929,+\infty])=[-3,-1.55625] \cup[-1.33929,0]
$$

Now the leftmost interval $[-3,-1.55625]$ is choosen and the procedure is repeated:

$$
\begin{aligned}
N([-3,-1.55625]) & =-2.278125-\frac{-1.87626}{3[2.42191,9]-7}=-2.278125-\frac{-1.87626}{[0.265742,20]} \\
& =-2.278125-[-7.060457,-0.093813]=[-2.184312,4.78233]
\end{aligned}
$$

\therefore if there are roots in $[-3,-1.55625]$ they must be in:

$$
[-3,-1.55625] \cap[-2.184312,4.78233]=[-2.184312,-1.55625]
$$

(it is proved that there are no roots smaller than -2.184312)
Applying the procedure to the interval [$-2.184312,-1.55625]$:

$$
\begin{aligned}
N([-2.184312,-1.55625]) & =-1.87028-\frac{0.549816}{3[2.42191,4.77122]-7} \\
& =-1.87028-\frac{0.549816}{[0.265742,7.31366]} \\
& =-1.87028-[0.0751766,2.06898]=[-3.93926,-1.94546]
\end{aligned}
$$

\therefore if there are roots in $[-2.184312,-1.55625]$ they must be in:

$$
[-2.184312,-1.55625] \cap[-3.93926,-1.94546]=[-2.184312,-1.94546]
$$

Applying the procedure to the interval [$-2.184312,-1.94546$]:

$$
\begin{aligned}
N([-2.184312,-1.94546]) & =-2.06489-\frac{-0.349964}{3[3.78481,4.77122]-7} \\
& =-2.06489-\frac{-0.349964}{[4.35444,7.31366]} \\
& =-2.06489-[-0.0803695,-0.0478508] \\
& =[-2.01704,-1.98452]
\end{aligned}
$$

\therefore if there are roots in $[-2.184312,-1.94546]$ they must be in:

$$
[-2.184312,-1.94546] \cap[-2.01704,-1.98452]=[-2.01704,-1.98452]
$$

(it is proved that there are no roots smaller than -2.01704)
It is proved that $[-2.01704,-1.98452]$ contains a root since:

$$
N([-2.184312,-1.94546])=[-2.01704,-1.98452] \subset[-2.184312,-1.94546]
$$

$[-2.01704,-1.98452]$ is an enclosure of the leftmost root in $[-3,0]$ since the newton method discarded [-3,-2.01704]
[$-2.01704,-1.98452$] has width $0.03252<0.05$

3. Constraint Propagation

Consider the constraint $y x^{2}+x y^{2}=0.75$ and a box $B=[-1,1] \times[-1,1]$
3.1. Is the constraint box-consistent in box B ?

$$
\begin{aligned}
& \text { box-consistent in }[-1,1] \times[-1,1] \\
& \Leftrightarrow 0 \in[-1,1](-1)^{2}+(-1)[-1,1]^{2}-0.75 \wedge 0 \in[-1,1](1)^{2}+(1)[-1,1]^{2}-0.75 \\
& \wedge 0 \in(-1)[-1,1]^{2}+[-1,1](-1)^{2}-0.75 \wedge 0 \in(1)[-1,1]^{2}+[-1,1](1)^{2}-0.75 \\
& \Leftrightarrow 0 \in[-1,1]+[-1,0]-0.75=[-2.75,0.25] \wedge 0 \in[-1,1]+[0,1]-0.75=[-1.75,1.25] \\
& \wedge 0 \in[-1,0]+[-1,1]-0.75=[-2.75,0.25] \wedge 0 \in[0,1]+[-1,1]-0.75=[-1.75,1.25]
\end{aligned}
$$

since all the resulting intervals include 0 , the constraint is box-consistent in box B
3.2. Is the constraint hull-consistent in box B ?
hull-consistent in $[-1,1] \times[-1,1]$

$$
\begin{aligned}
\Leftrightarrow \exists_{y \in[-1,1]} y(-1)^{2}+(-1) y^{2}-0.75 & =0 \wedge \exists_{y \in[-1,1]} y(1)^{2}+(1) y^{2}-0.75=0 \\
\wedge \exists_{x \in[-1,1]}(-1) x^{2}+x(-1)^{2}-0.75=0 & \wedge \exists_{x \in[-1,1]}(1) x^{2}+x(1)^{2}-0.75
\end{aligned}
$$

However, equation $y(-1)^{2}+(-1) y^{2}-0.75=0$ has no real solutions:

$$
\begin{aligned}
y(-1)^{2}+(-1) y^{2}-0.75=0 & \Leftrightarrow y^{2}-y+0.75=0 \\
& \Leftrightarrow y=\frac{1 \pm \sqrt{1-4 \times 0.75}}{2}=\frac{1 \pm \sqrt{-2}}{2}
\end{aligned}
$$

\therefore the constraint is not hull-consistent in box B
3.3. Compute the box B^{\prime} obtained by applying HC4-revise on the constraint with the initial box B.

HC4-revise enforce hull-consistency on a constraint by implicitly decomposing it into primitive constraints. Since box-consistency is stronger than hull-consistency applied on the primitive constraints obtained by decomposition, and the constraint is box-consistent in box B, then B cannot be narrowed by the HC4-revise. Thus $B^{\prime}=B=[-1,1] \times[-1,1]$.

