Constraint Programming
 2020/2021 - Mini-Test \#2
 Monday, 11 January, 9:00 h in 204-Ed.II
 Duration: 1.5 h (open book)

1. Interval Arithmetic

Consider the univariate polynomial function expressed in the standard form as:

$$
f(x)=x^{3}-7 x-6
$$

1.1. Define the mean value extension of f over the interval $[-3 / 2,-1 / 2]$ centered at the midpoint.
1.2. Let $I=[-1-w,-1+w]$ with $w=1 / 2$. Compute enclosures for the range of $f(I)$ with:
a. the standard form;
b. the centered form defined in 1.1
1.3. Prove that for any positive $w \leq 1 / 2$ the enclosure for the range of $f([-1-w,-1+w])$ obtained with the centered form is sharper that the obtained with the standard form.
1.4. Define an algorithm that based on the monotonicity of f computes a sharp enclosure of the range of the function for any interval $[a, b]$.

2. Interval Newton

Consider the polynomial of the previous question: $f(x)=x^{3}-7 x-6$
2.1. Define the interval Newton function for the polynomial.
2.2. Use the interval Newton method to compute an interval enclosure of the smallest root of the polynomial within $[-3,0]$. The enclosure must be certified (proved that contains a root) and sharp (width cannot exceed 0.05).

3. Constraint Propagation

Consider the constraint $y x^{2}+x y^{2}=0.75$ and a box $B=[-1,1] \times[-1,1]$
3.1. Is the constraint box-consistent in box B ?
3.2. Is the constraint hull-consistent in box B ?
3.3. Compute the box B^{\prime} obtained by applying HC4-revise on the constraint with the initial box B.

