
 Constraint Programming Mini-Test #1 - 2020/21 1 / 4 

Constraint Programming 

2020/2021– Mini-Test #1 

Tuesday, 3 November, 9:00 h, Room 204-II 

Duration: 1.5 h (open book) 

1. Finite domain Constraints - Propagation (6 pts)  

Consider the constraint network on the right, where nodes represent 

variables, all with domain {1,2,3,4,5,6}.  Arcs labelled  “>p” and “=q” 

constrain the absolute difference between the connected variables to 

satisfy that condition (i.e.  | a - b | > 4 and | a - f | = 2). 

a)  (1 pt) Is the problem satisfiable? If so, how many different solutions exist? Justify your answer.  

b) (2 pt) What pruning is achieved initially, if node-consistency is maintained? And bounds-

consistency? And arc-consistency? 

c) (2 pt) Are there any implicit binary constraint in the network? Would path consistency infer such 

constraints? Justify your answer.  

d) (1 pt) Notice that the problem exhibits some symmetry, namely horizontal and vertical reflections? 

Given the analysis you did in the previous items could you add additional symmetry breaking 

constraints. Justify. 

Proposed Solution 

a) The problem is satisfiable, and has two solutions: 

• The >4 constraints prune the domains of variables a, b, d and e to the set {1,6}, and a ≠b; 

• The =2 constrain variables a and e to have the same parity (in fact a difference of 0 or 4). 

• Hence, a must be equal to e and, likely, b must be equal to d. 

• Hence the solutions are 

• S1: a = e = 1, f = 3, b = d = 6, c = 4; and  

• S2: a = e = 6, f = 4, b = d = 1, c = 3.  

b) Node-consistency does not prune any domain, since there are no unary constraints.  

Bounds consistency does not prune any of the domains since the bounds of the domain of all 

variables have support on the other connected variables. For example, a = 1 has support on b = 6 

and c = 3; a = 6 has support on b = 1 and c = 4. Hence the domain of a is not pruned. And the 

same applies to variables b, d and e. Regarding variable c, its upper bound 6 has support on b = 4 

and d = 4, and its lower bound 1 has support in b = 3 and d = 3, and the same applies to f. 

Arc-consistency removes values 2,3,4 and 5 from the domain of a, as they have no support on b, 

and the same applies to b. Hence variables a, b, d and e have their domain reduced to {1,6}. And 

these pruned domains imply, in turn, that variables c and f have their domains pruned to {3,4}. 

c) Path consistency imposes that variables a and e have a difference of either 0 or 4. With their 

domains pruned to {1,6}, this means that arc-consistency would infer that a = e (and b = d). 

d) Given the vertical symmetry of the problem, a constraint a ≥ b should eliminate solution S1, that 

can be inferred from S2 changing a  b, d  e, and c  f. 
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2. Global Constraints (5 pts) 

Consider a “global” constraint, distribute, that enforces the elements of an array so as the number 

of times the values appear in a solution are all different, except if they do not appear at all. For 

example, given an array of 4 elements with domains {0,1,2}, the assignment [2,2,2,2] is a possible 

solution (2 appears 4 times and both 0 and 1 appear 0 times), as is [1,1,1,2] (1 appears 3 times, 2 

appears once, and 0 does not appear), but not [0,2,2,1] since values 0 and 1 appear the same number 

of times (once) in that assignment. 

a) (3pt) Implement in Choco this constraint in a function distribute with signature 

function void distribute(Model md, IntVar [] A, int n) 

where the domain of all variables in array A can only take values in the range 0..n-1. 

Suggestion: Use the predefined constraints  

• count(int v, IntVar [] A , IntVar c) : it constrains the number of variables 

in A that have value v to be exactly c; and 

• allDifferentExcept0(A): it constrains the variables in A to have different values, 

except value 0 that may appear more than once. 

b) (2 pt) If your implementation of this global constraint maintained domain consistency, what 

values would be pruned from the domain of the array A, with the initial domains shown. 
 A[0] in {2, 4}  
 A[1] in {0, 1}  
 A[2] in {1, 4}  
 A[3] in {0, 3, 5}  
 A[4] in {0, 3, 5}  
 A[5] in {2, 3}  

Proposed Solution 

a) Since we know that each of the values 0..n-1 may appear in a solution at most n times, the we 

only have to count the number of occurrences of each of these values in an IntVar array C, and 

guarantee that these counts are not repeated, except if they are zero. 

 function void distribute(Model md, IntVar [] A, int n){ 
  IntVar [] C = intVarArray(“C”, n, 0, n) 
  for (int v = 0; v < n; v++){ 
   md.count(v, A, C[v]); 

  } 
  md.allDifferentExcept0(C).post(); 
 } 

b) Because there are 6 values in the domain, a possible assignment has all 6 variables with the 

same value. But there is no value appearing in all 6 variables. Neither is any value appearing in 

5 or 4 variables. Hence the values that appear in a solution must be such that one value appears 

3 times, another value appears 2 times and a third value appears once. The other values do not 

appear in the solution.  

For the domains given, only 0 and 3 appear 3 times in the domain of all variables.  

If A[1] = A[3] = A[4] = 0 then the only values that appear twice in the domains of the other 

variables are either 

a. A[0] = A[2] = 4 leaving A[5] to be 2 or 3; or 

b. A[0] = A[5] = 2 leaving A[2] to be 1 or 4; or 

If A[3] = A[4] = A[5] = 3 then the only values that appear twice in the domains of the other 

variables are either 

a. A[0] = A[2] = 4 leaving A[1] to be 0 or 1; or 

b. A[1] = A[2] = 1 leaving A[2] to be 1 or 4; or 

In all these cases, value 5 does not appear in any solution and may be pruned from the domains 

of variables A[3] and A[4]. 
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3. Modelling with Finite Domain Constraints (9 pts) 

Graceful Graphs (Prob. 53 of CSPLIB) 

As shown in the figure, a labelling f of the nodes of a graph 

with q edges is graceful if:  

• f assigns each node a unique label from 0, 1, … , q;  

• each arc (x,y) is labelled with |f(x)−f(y)|; and 

• the arc labels are all different.  

The graph shown represents a graceful labelling, where each node is denoted with a pair a/b where a 

in the order of the node and b its label (for example the arc connecting node 3 with label 5 and node 

1 with label 3 has label 2 = 5 – 3). 

Assume that you are given the number of nodes, n, and a graph specified by an m x 2 matrix where 

each row represents an arc, and the two columns represent the order of the nodes connected by the 

arc. For example, the graph above is represented by matrix G and the number of nodes n: 

int [][] G = {{0,1},{0,2},{1,2},{1,3},{2,3}};  
int n = 4; 

a) (2 pt) Specify a model for this problem in Choco. More precisely, declare the decision variables 

you chose as well as their domains, together with the model and solver you propose. 

b) (4 pt) (SAT) What constraints would you consider to modelling the satisfaction problem, i.e. to 

find a graceful labelling of the graph? 

c) (3 pt) (OPT) Assume that a rank is defined for a label of the graph as the sum of the product of 

the order of the nodes by their label. For example, the label shown has rank  

R = 0*4 + 1*3 + 2*0 + 3*5 = 18 

Adapt your model to find the minimal graceful label of the graph. 

Proposed Solution: 

a) We consider an array N of decision variables for each of the nodes, and another array A for 

the arcs. The domains of the variables denoting the labels of the nodes and arcs are 

respectively 0..na and 1..na. 

The choco code may thus be 

 int [][] G = {...}; 

 int n = ...; 

 int na = G.length; 

 Model md = new Model(); 

 Solver sv = md.getSolver(); 

 IntVar [] N = md.intVarArray(“N”, n,  0, na); 

 IntVar [] A = md.intVarArray(“A”, na, 1, na) 

 

b) There are two types of constraints. The labels of the arcs must all be different, 

 md.allDifferent(A); 

and the label of each arc should be the absolute difference between the labels of the connected 

nodes. Form the above specification of the graph, these constraints can be modelled as: 

´  for (int a = 0; a < na; a++){ 

  //A[a] = abs( N[G[a][0]] – N[G[a][1]]); 

  A[a].eq( (N[G[a][0]].sub(N[G[a][1]])).abs() ).post(); 
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 } 

c)  To obtain the minimal graceful label we must define the objective function as a variable, and 

then set the search to meet this objective. 

Variable rank, corresponding to the objective function, may be specified as the sum of the 

products of the orders of the nodes by their labels, as in 

  IntVar [] rs = md.intVarArray(“rs”, n,  0, n*na); // n*na is upper bound 

  IntVar rank  = md.intVar(“rank”, 0, n*n*na);    // n*n*na is upper bound  

  for (int i = 0; i < n; i++) 

   rs[i].eq(N[i].mul(i)).post(); 

  md.sum(rs, "=", rank).post(); 
 

The minimization objective is set by invoking the model method 

  md.setObjective(Model.MINIMIZE, rank); 
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