Constraint Programming

 2019/2020 - Mini-Test \#2

 2019/2020 - Mini-Test \#2}

Wednesday, 11 December, 16:30 h in 128-Ed.II
Duration: 1.5 h (open book)

1. Interval Arithmetic

Consider the univariate polynomial function expressed in the standard form as:

$$
f(x)=x^{2}-4 x+3
$$

1.1. Express the function in the factored form.

$$
\begin{array}{ll}
& x=\frac{4 \mp \sqrt{16-4(3)}}{2}=\frac{4 \mp 2}{2}=2 \mp 1=1 \vee 3 \\
\therefore & f(x)=(x-1)(x-3) \leftarrow \text { factored form }
\end{array}
$$

1.2. Compute the mean value extension of f over the interval $[a, b]$ centered at the midpoint c.

$$
\begin{aligned}
& F_{c}(x)=f(c)+F^{\prime}([a, b]) \times(x-c) \\
& c=\frac{a+b}{2} \\
& f(c)=c^{2}-4 c+3 \\
& F^{\prime}([a, b])=2[a, b]-4 \\
& F_{c}(x)=c^{2}-4 c+3+(2[a, b]-4) \times(x-c)
\end{aligned}
$$

1.3. Find, if possible, an interval (with width $=1$) for which the natural interval evaluation of the mean value extension computes an enclosure smaller than the obtained by the factored form.

$$
\begin{aligned}
& {[a, b]=[1.5,2.5] \quad c=2} \\
& (x-1)(x-3)=([1.5,2.5]-1)([1.5,2.5]-3)=([0.5,1.5])([-1.5,-0.5]) \\
& \\
& =[-2.25,-0.25] \quad(\text { width } 2) \\
& F_{c}([1.5,2.5])= \\
& = \\
& =
\end{aligned} \begin{aligned}
2 & -4(2)+3+(2[1.5,2.5]-4) \times([1.5,2.5]-2) \\
& =-1+[-1,1] \times[-0.5,0.5] \\
& =-1+[-0.5,0.5]=[-1.5,-0.5] \quad \text { (width } 1)
\end{aligned}
$$

1.4. Prove the inclusion monotonicity property of the interval arithmetic square operator.

$$
\begin{aligned}
& \text { Prove: }[a, b] \subseteq[c, d] \Rightarrow[a, b]^{2} \subseteq[c, d]^{2} \\
& {[a, b] \subseteq[c, d] \Rightarrow c \leq a \leq b \leq d}
\end{aligned}
$$

Case $0 \leq c$

$$
\begin{aligned}
& {[a, b]^{2}=\left[a^{2}, b^{2}\right]} \\
& {[c, d]^{2}=\left[c^{2}, d^{2}\right]} \\
& 0 \leq c \leq a \Rightarrow c^{2} \leq a^{2} \\
& 0 \leq b \leq d \Rightarrow b^{2} \leq d^{2} \\
& \therefore[a, b]^{2} \subseteq[c, d]^{2}
\end{aligned}
$$

Case $c<0 \leq a$

$$
\begin{aligned}
& {[a, b]^{2}=\left[a^{2}, b^{2}\right]} \\
& {[c, d]^{2}=\left[0, \max \left(c^{2}, d^{2}\right)\right]} \\
& 0 \leq a \Rightarrow 0 \leq a^{2} \\
& 0 \leq b \leq d \Rightarrow b^{2} \leq d^{2} \\
& \therefore[a, b]^{2} \subseteq[c, d]^{2}
\end{aligned}
$$

Case $a<0 \leq b$

$$
\begin{aligned}
& {[a, b]^{2}=\left[0, \max \left(a^{2}, b^{2}\right)\right]} \\
& {[c, d]^{2}=\left[0, \max \left(c^{2}, d^{2}\right)\right]} \\
& c \leq a<0 \Rightarrow a^{2} \leq c^{2} \\
& 0 \leq b \leq d \Rightarrow b^{2} \leq d^{2} \\
& \therefore[a, b]^{2} \subseteq[c, d]^{2}
\end{aligned}
$$

Case $b<0 \leq d$

$$
\begin{aligned}
& {[a, b]^{2}=\left[b^{2}, a^{2}\right]} \\
& {[c, d]^{2}=\left[0, \max \left(c^{2}, d^{2}\right)\right]} \\
& 0 \leq b^{2} \\
& c \leq a<0 \Rightarrow a^{2} \leq c^{2} \\
& \therefore[a, b]^{2} \subseteq[c, d]^{2}
\end{aligned}
$$

Case $d<0$

$$
\begin{aligned}
& {[a, b]^{2}=\left[b^{2}, a^{2}\right]} \\
& {[c, d]^{2}=\left[d^{2}, c^{2}\right]} \\
& b \leq d<0 \Rightarrow d^{2} \leq b^{2} \\
& c \leq a<0 \Rightarrow a^{2} \leq c^{2} \\
& \therefore[a, b]^{2} \subseteq[c, d]^{2}
\end{aligned}
$$

Thus, for all possible cases: $[a, b]^{2} \subseteq[c, d]^{2}$

$$
\therefore[a, b] \subseteq[c, d] \Rightarrow[a, b]^{2} \subseteq[c, d]^{2} \quad \text { q.e.d. }
$$

2. Interval Newton

Consider the function: $f(x)=(x-1)^{2}-e^{x-3}$
2.1. Define the interval Newton function for the polynomial.

$$
\begin{aligned}
& N([a, b])=c-\frac{f(c)}{F^{\prime}([a, b])} \quad \text { with } \quad c=\frac{a+b}{2} \\
& f(c)=(c-1)^{2}-e^{c-3} \\
& F^{\prime}([a, b])=2([a, b]-1)-e^{[a, b]-3} \\
& \therefore N([a, b])=c-\frac{(c-1)^{2}-e^{c-3}}{2([a, b]-1)-e^{[a, b]-3}}
\end{aligned}
$$

2.2. Evaluate the interval Newton function in $[0.4,0.8]$ and in $[0.8,1.2]$.

$$
\begin{aligned}
& N([0.4,0.8])=0.6-\frac{(0.6-1)^{2}-e^{0.6-3}}{2([0.4,0.8]-1)-e^{[0.4,0.8]-3}} \\
& =0.6-\frac{0.0693}{[-1.2,-0.4]-\left[e^{-2.6}, e^{-2.2}\right]}=0.6-\frac{0.0693}{[-1.3108,-0.4743]} \\
& =0.6-[-0.1461,-0.0529]=[0.6529,0.7461] \\
& \\
& N([0.8,1.2])=1-\frac{(1-1)^{2}-e^{1-3}}{2([0.8,1.2]-1)-e^{[0.8,1.2]-3}} \\
& =1-\frac{-e^{-2}}{[-0.4,0.4]-\left[e^{-2.2}, e^{-1.8}\right]}=1-\frac{-e^{-2}}{[-0.5653,0.2892]} \\
& =1-([-\infty,-0.4679] \cup[0.2394,+\infty])=[-\infty, 0.7606] \cup[1.4679,+\infty]
\end{aligned}
$$

2.3. From the above evaluations what can be concluded with respect to the existence of roots within those intervals.
$N([0.4,0.8])=[0.6529,0.7461] \subset[0.4,0.8] \Rightarrow$ There is at least one root in $[0.4,0.8]$
$N([0.8,1.2]) \cap[0.8,1.2]=([-\infty, 0.7606] \cup[1.4679,+\infty]) \cap[0.8,1.2]=\varnothing \Rightarrow$ There are no roots in [0.8,1.2]

3. Constraint Propagation

Consider the constraints below and a box $B=[2,3] \times[3,5]$

$$
\begin{aligned}
& \text { c1: }(x-4)^{2}-y \leq-1 \\
& \text { c2: } x^{2}-4 x+y \leq 0
\end{aligned}
$$

3.1. Is the system hull-consistent in box B ?
hull-consistent in $[2,3] \times[3,5]$

$$
\begin{aligned}
& \Leftrightarrow \exists_{y \in[3,5]}(2-4)^{2}-y \leq-1 \wedge \exists_{y \in[3,5]} 2^{2}-4(2)+y \leq 0 \\
& \wedge \exists_{y \in[3,5]}(3-4)^{2}-y \leq-1 \wedge \exists_{y \in[3,5]} 3^{2}-4(3)+y \leq 0 \\
& \wedge \exists_{x \in[2,3]}(\mathrm{x}-4)^{2}-3 \leq-1 \wedge \exists_{x \in[2,3]} \mathrm{x}^{2}-4 \mathrm{x}+3 \leq 0 \\
& \wedge \exists_{x \in[2,3]}(x-4)^{2}-5 \leq-1 \wedge \exists_{x \in[2,3]} x^{2}-4 x+5 \leq 0
\end{aligned}
$$

Consider: $x^{2}-4 x+5$, it is nondecreasing in $[2,3]$ since its derivative $2 x-4$ is non negative in $[2,3]$ and positive in 3 . Therefore:

$$
\begin{aligned}
& \forall_{x \in[2,3]} 2^{2}-4(2)+5 \leq x^{2}-4 x+5 \leq 3^{2}-4(3)+5 \\
& \forall_{x \in[2,3]} \leq x^{2}-4 x+5 \leq 2 \\
& \therefore \nexists_{x \in[2,3]} x^{2}-4 x+5 \leq 0
\end{aligned}
$$

Thus the system is not hull-consistent in $[2,3] \times[3,5]$
3.2. Is the system box-consistent in box B ?
box-consistent in $[2,3] \times[3,5] \Leftrightarrow$ the following inequalities are satisfiable:

$$
\begin{gathered}
\quad(2-4)^{2}-[3,5] \leq-1 \wedge 2^{2}-4(2)+[3,5] \leq 0 \\
\wedge(3-4)^{2}-[3,5] \leq-1 \wedge 3^{2}-4(3)+[3,5] \leq 0 \\
\wedge([2,3]-4)^{2}-3 \leq-1 \wedge[2,3]^{2}-4[2,3]+3 \leq 0 \\
\wedge([2,3]-4)^{2}-5 \leq-1 \wedge[2,3]^{2}-4[2,3]+5 \leq 0
\end{gathered}
$$

$$
\begin{aligned}
& \Leftrightarrow 4-[3,5] \leq-1 \wedge 4-8+[3,5] \leq 0 \\
& \wedge 1-[3,5] \leq-1 \wedge 9-12+[3,5] \leq 0 \\
& \wedge[1,4]-3 \leq-1 \wedge[4,9]-[8,12]+3 \leq 0 \\
& \wedge[1,4]-5 \leq-1 \wedge[4,9]-[8,12]+5 \leq 0 \\
& \Leftrightarrow[-1,1] \leq-1 \wedge[-1,1] \leq 0 \\
&\wedge[-4,-2] \leq-1 \wedge[0,2] \leq 0] \\
& \wedge[-2,1] \leq-1 \wedge[-5,4] \leq 0 \\
& \wedge[-4,-1] \leq-1 \wedge[-3,6] \leq 0
\end{aligned}
$$

Since all inequalities are trivially satisfiable the system is box-consistent in $[2,3] \times[3,5]$
3.3. Can you reduce box B by applying HC4-revise on both constraints? Justify.

HC4-revise enforces hull-consistency in the decomposed system of primitive constraints which is weaker than box-consistency enforced on the original constraints. Since the system is already box-consistent in box B, the box cannot be reduced by applying the weaker HC4-revise.
3.4. Apply HC4-revise to constraint c 1 with an initial box $B^{\prime}=[2,3] \times[0,2]$.

Forward evaluation:

Backward propagation:

The resulting box is $[3] \times[2]$.
3.5. What is the box obtained by applying BC3-revise on both constraints with the initial box B^{\prime} ?

BC3-revise enforces box-consistency on the original system of constraints and is stronger than HC4-revise. We have seen in the previous question that applying HC4-revise to constraint c1 results in box [3] $\times[2]$. Since $x=3, y=2$ is a solution of the system:

$$
\begin{array}{ll}
\text { c1: }(3-4)^{2}-2 \leq-1 \Leftrightarrow 1-2 \leq-1 \Leftrightarrow-1 \leq-1 & \text { (True) } \\
\text { c2: } 3^{2}-4(3)+2 \leq 0 \Leftrightarrow 9-12+2 \leq 0 \Leftrightarrow-1 \leq 0 & \text { (True) }
\end{array}
$$

applying HC4-revise on the system cannot discard it and the result is the box [3]×[2]. Therefore for any stronger method, such as BC3-revise, the result will be the same: [3] $\times[2]$.

