Constraint Programming

2016/2017 - Exam
Friday, 13 January 2017, 10:30 h

Part II- Interval Constraints (1.5 h-open book)

1. Interval Arithmetic

Consider the polynomial function expressed in the standard form as: $f(x)=x^{3}-3 x^{2}+2 x$
1.1. Express this function in:

$$
\begin{aligned}
& \text { Horner's form: } a_{0}+x\left(a_{1}+x\left(a_{2}+\cdots+x\left(a_{n-1}+a_{n} x\right)\right)\right) \\
& \text { Factored form: }\left(x-r_{1}\right)\left(x-r_{2}\right) \cdots\left(x-r_{n}\right)
\end{aligned}
$$

1.2. Compute the natural interval evaluation of each form for $I=[-1,2]$.
1.3. For each form choose a non-degenerated interval for which the natural interval evaluation computes the exact bounds of the function.

2. Interval Newton

Consider the polynomial of the previous question: $f(x)=x^{3}-3 x^{2}+2 x$
2.1. Define the interval Newton function for the polynomial.
2.2. Define an algorithm that computes the exact bounds of the derivative of the polynomial function for any $I=[a, b]$ with $a>1$.
2.3. Use the interval Newton method to prove that the polynomial has at least one root in $\left[\frac{7}{4}, \frac{7}{3}\right]$.
2.4. Can you prove with only 1 iteration of the interval Newton step that the polynomial has no roots in $\left[\frac{1}{4}, \frac{3}{4}\right]$? Justify.

3. Constraint Propagation

Consider the following Continuous Constraint Satisfaction Problem:
variables: $\quad x \in[0,1]$
$y \in[0,1]$
constraints: $\quad x^{2}+3 x y=1$

$$
x=y+\frac{1}{2}
$$

3.1. Define a set of narrowing functions able to enforce hull-consistency on the original constraints of the CCSP (for any box $B \subseteq[0,1]^{2}$).
3.2. Starting with the original domains box $B \subseteq[0,1]^{2}$, apply the above narrowing functions up to a fixed-point. What is the box obtained?
3.3. Show the results that would be obtained during the execution of a branch-and-prune algorithm with the pruning step based on the above narrowing functions and a branching step that splits the largest variable domain in its midpoint. Start with the original domains box $B \subseteq$ $[0,1]^{2}$ and stop splitting when the width of any variable domain is strictly smaller than 0.5 . Stop pruning when the width of any variable domain is strictly smaller than 0.1 .

