

	 Constraint	Programming	 Exam	-	13	January	2017	 1	–	4	

Constraint	Programming	
2016/2017	–	Exam	

Friday,	13	January	2017,	09:00	h	

Part	I	–	Finite	Domains	(1.5	h	–	open	book)	

1. Propagation	(7	pts)	
Consider	 the	constraint	network	on	 the	right,	where	nodes	
represent	 variables	 with	 domain	 {1,2,3,4},	 directed	 arcs	
mean	 constraints	 of	 inequality	 (“>”)	 and	 arcs	 labelled	 ≠k	
denote	 constraints	 of	 difference-k,	 i.e.	 the	 values	 of	 the	
corresponding	constraints	should	differ	by	at	least	k	(i.e.	the	
usual	difference	constraint	≠	is	the	special	case	≠1).		

a) (3	pt)	Show	that	the	network	is	satisfiable.	What	are	the	possible	solutions?	

b) (1	pt)	 Show	 the	 pruning	 achieved	 in	 the	 domain	 of	 the	
variables	by	maintaining	arc-consistency.		

c) (2	 pt)	 Show	 the	 pruning	 that	would	 be	 achieved	 in	 the	 domain	 of	 the	 variables	 by	maintaining	
path-consistency?	

d) (1	pts)	Would	path-consistency	be	sufficient	to	guarantee	backtrack	free	labelling	of	the	variables?	
Justify.	

Proposed	Solution	
a) Given	the	inequality	constraints	between	variables	a	and	d,	their	domains	are	narrowed	to	{2,3,4}	

and	{1,2,3},	respectively.	But	a	cannot	be	3	since,	on	the	one	hand,	variables	b	and	c	would	take	
value	1	and,	on	the	other	hand,	d	would	take	one	of	the	values	1	or	2,	none	of	which	is	compatible	
with	 the	 value	1	of	 variables	b	and	c.	 If	a	 takes	 value	2,	 then	d	must	 take	 value	1	 and	b	 and	c	
should	take	value	4.	If	a	takes	value	4,	then	b	and	c	should	take	values	1	or	2.	But	since	d	cannot	
be	greater	than	3,	then	both	variables	b	and	c	should	in	fact	take	value	1,	and	d	take	value	3.	Thus	
the	 only	 solutions	 for	 variables	 a,	 b,	 c	 and	 d	 are	 <2,4,4,1>	 and	 <4,1,1,3>.	 Similarly,	 the	 only	
solution	tuples	for	variables	e,	f,	g	and	h	are	<2,4,4,1>	and	<4,1,1,3>.	Since	the	constraint	≠2	on	
variables	 c	 and	 f	 enforce	 that	 they	 must	 be	 different,	 the	 only	 two	 complete	 solutions	 are	
<2,4,4,1,4,1,1,3>	and	<4,1,1,3,2,4,4,1,>	.	

b) Given	 the	 inequality	 constraints,	 maintaining	 arc-consistency	 would	 eliminate	 values	 1	 from	
variables	a	and	e	and	value	4	from	those	of	variables	d	and	h.	Arc-consistency	over	the	remaining	
≠2	constraints	would	not	lead	to	any	further	pruning.		

c) Path-consistency	 would	 impose	 some	 pruning	 on	 variable’s	 domains.	 The	 only	 2-labels	 with	
variables	a	and	d	that	can	be	extended	to	variables	b	or	c	are	<a/2,d/1>	and	<a/4,d/3>	that	can	
be	extended	to	3	labels	<a/2,b/4,d/1>	and	<a/4,b/1,d/3>,	leading	to	the	pruning	of	the	domains	
of	 a	 and	 d	 to	 respectively	 {2,4}	 and	 {1,3},	 and	 similar	 pruning	would	 occur	 to	 the	 domains	 of	
variables	e	and	h.	The	remaining	variables,	b,	c,	f	and	g	have	their	domains	pruned	to	{1,4}.	

d) Given	 the	 above	 pruning,	 it	 is	 easy	 to	 see	 that	 the	 assignment	 of	 one	 of	 values	 in	 any	 of	 the	
variables	would	propagate	for	one	of	the	2	complete	solutions.	For	example,	after	the	assignment	
c=1	constraint	propagation	would	lead	to	fixing	a	=	2,	d	=	1	and	b	=	4,	and	also	f	=	4,	e	=	2,	h	=	1	
and	g	=	4.	

	 	

≠2

≠2

≠2

a

d

b c

e

h

f g

≠2 ≠2 ≠2 ≠2

≠2 ≠2 ≠2 ≠2

	 Constraint	Programming	 Exam	-	13	January	2017	 2	–	4	

	
	

2. Global	Constraints	(6	pts)
Spreading	the	execution	of	different	tasks	such	that	they	do	not	start	all	at	about	the	same	time	is	often	
quite	 convenient	 and	 is	 the	 purpose	 of	 the	 global	 constraint spread(S):	 given	 a	 vector	 of	 starting	
times,	each	in	some	of	starting	times	spread	constrains	the	starting	times	to	be	as	evenly	distributed	as	
possible.	In	more	detail,	if	S	refers	to	n	tasks,	and	all	of	them	start	in	the	range lo..up (time	units),	
then	the	global	constraint	imposes	that	the	difference	in	the	starting	times	of	any	two	tasks	is	at	least
floor((up-lo)/(n-1)).	For	example,	if	5 tasks	start	between 1 and 22,	then	the	starting	times	of	
any	 two	 tasks	should	differ	by	at	 least floor((22-1)/(5-1) = 5 time	units	 (possible	solutions	
have	 tasks	 starting	 at	 times	 {1,6,11,16,21}	 or	 {1,6,11,16,22},or	 {1,7,12,17,22}.	 In	
some	applications,	tasks	must	also	be	sorted,	say	in	increasing	order,	i.e. S[i] ≤ S[i+1],	and	this	
may	be	imposed	by	another	global	constraint	sort(S).

a) (2	 pt)	 Show	 that	 even	 when	 both	 global	 constraints	 maintain	 domain	 consistency	 (or	
generalised	 arc-consistency),	 it	 is	 possible	 that	 their	 separate	 execution	 does	 not	 prune	 the	
domain	 of	 any	 of	 the	 decision	 variables	 in S,	 any	 more	 than	 each	 of	 them	 separately,	 in	
contrast	 with	 their	 combination	 in	 a	 single	 global	 constraint, spread_sorted(S),	
maintaining	domain	consistency.

b) (3	 pt)	 Assuming	 the	 constraint	 spread	 is	 available,	 implement	 the	 spread_sorted	
constraint	by	means	of	a	function	with	signature,:	

 function void sorted_spread (Solver<CP> cp, var<CP> int [] S)

c) 	(1	pt)	Does	your	implementation	achieve	domain-consistency?	Justify.	

Proposed	Solution	
a) It	 is	 easy	 to	 check	 that,	 if	 all	 variables	 have	 initial	 domain	 in	 the	 range lo..up,	 the	sort

constraint	 does	 not	 achieve	 any	 pruning,	 since	 a	 solution	 where all S[i] = k for k ∈
lo..up is	consistent	with	the	constraint.	Hence,	any	value	in	that	range	belongs	to	a	solution.	
On	the	other	hand,	the	spread	constraint	may	prune	some	of	the	values	from	the	domain	of	
the	variables.	For	example,	if	the	domain	is 1..22 then	no	task	could	start	at	time 3,	since	in	
this	case,	the	other	tasks	should	start	no	sooner	than	8,13,18	and	23 enforcing	the	last	task	
to	start	after	 the	 time	 limit.	 In	 fact,	maintaining	domain	consistency	 in	 the	spread	constraint	
would	 prune	 the	 domain	 of	 all	 the	 decision	 variables,	 in	 this	 case,	 to	 the	 set
{1,2,6,7,11,12,16,17,21,22}.	

b) The	 sorted_spread	 constraint	 could	 be	 implemented	 by	 imposing	 inequality	 constraints	
with	the	bias	computed	from	the	spread	constraint	as	follows:	

 function void sorted_spread(Solver<CP> cp, var<CP> int [] S){
 cp.post(spread(S));
 int n = S.getSize();
 int lo = min (i in 1..n) S[i].getLow();
 int up = max (i in 1..n) S[i].getUp();
 int k = floor((up-lo)/(n-1));
 forall(i in i..n-1) cp.post(S[i+1] >= S[i]+k);
 }

c) This	 implementation	 does	 guarantee	 domain	 consistency	 (provided	 the	 spread	 constraint	
maintains	domain	consistency	and	that	k > 0	(if	k = 0	we	would	have	the	same	situation	as	
before,	no	pruning	would	be	achieved).	

	 Constraint	Programming	 Exam	-	13	January	2017	 3	–	4	

3. Modeling		-	Constrained	Travelling	Salesperson	(7	pts)	
Given	a	graph	<V,E>	where	V	is	a	set	of	n	vertices	and	E	is	a	set	of	undirected	weighted	arcs	between	
the	vertices,	represented	by	a	symmetric	matrix	of	distances	(positive	integers),	the	goal	 is	to	obtain	
an		Hamiltonian	Tour	of	the	graph	with	minimal	length	such	that:	

• The	sum	of	the	weigths	of	any	two	consecutive	arcs	does	not	exceed	maxPairs.	
• Some	of	the	arcs	are	not	acceptable.	These	are	represented	in	a	matrix	F,	with	two	columns	and	

where	each	row	i	denote	the	vertices	of	the	arcs	Fi,1	↔ 	Fi,2	(both	directions)	that	should	not	be	
used.	

For	example,	 the	graph	below	has	5	 vertices	and	matrices	E	 ,	 that	 represents	 it,	 and	F	 representing	
forbidden	arcs 2↔3 and 4↔5 are	shown.	The	shortest	Hamiltonian	tour,	satisfying maxPairs = 20 is
1→4→3→5→2→1 (or 1←4←3←5←2←1),	with	length 8 + 3 + 7 + 10 + 5 = 33.

Specify	in	Comet	a	function		
 function ??? tour(int [,] E, int [,] F, int MaxArcs, MaxPairs)

to	solve	this	problem,	that	takes	as	input	parameters	the	matrices	of	distances E and	forbidden	arcs F,
and	 the	 maximum	 accepted	 values	 for MaxPairs, as	 discussed	 above,	 and	 outputs	 a	 solution	 in	 a	
format	that	is	left	open	to	the	modelling	you	chose.
a) (2	pts)	Specify	the	structures	and	variables	you	require	to	solve	the	problem.	Your	specification	

should	in	particular	specify	how	the	encoding	used	to	represent	the	results.		

Note:	 In	 your	model,	 you	may	 use	 function Constraint<CP> circuit(var<CP>{int}[] x),
that	creates	a	circuit	constraint	which	holds	 if	all	 the	variables	are	assigned	values	representing	
an	Hamiltonian	circuit.	More	specifically,	 let x be	an	array x[l],x[l+1],... ,x[u] and R be	
l..u. Each	 element	 in R denotes	 a	 vertex	 and x[i] denotes	 the	 successor	 of	 vertex i. The	
constraint	 succeeds	 if	 the	graph	 so	 formed	 is	 an	Hamiltonian	 circuit,	 i.e.	 if	 it	 visits	 every	vertex	
exactly	once	and	connects	all	vertices.

b) 	(5	pts)	Implement	the	constraints	required	for	solving	the	problem	with	the	variables	declared	in	
the	previous	item	(i.e.	the	block solve<cp>{…},	or minimize<cp> … subject to {…}.

c) 	(1	pts)	Specify	a	heuristic	to	solve	the	problem	(i.e.	the	block using {…}).	Justify	the	choice.

1	

2	

3	

5	

4	

5	 13	

10

2	

3	

15	
7	

6	8	

int E[1..5,1..5] = [
[100, 5, 15, 8, 13],
[5,100, 2,100, 10],
[15, 2,100, 3, 7],
[8,100, 3,100, 6],
[13, 10, 7, 6,100]

];
int F[1..2,1..2] = [

[2,3],
[4,5]

];

	 Constraint	Programming	 Exam	-	13	January	2017	 4	–	4	

Proposed	Solution	
a) Adopting	 the	 circuit	 constraint,	 the	only	 variables	 that	need	 to	be	 considered	are	 the	 successor	

variables, succ, as	used	in	this	global	constraint,	as	well	as	a	variable,	tour,	that	represents	the	
length	of	the	tour	that	is	to	be	minimised.	

The	result, sol, is	simply	returned	as	an	array	of	successor	nodes	(converted	to	integers).

function int [] tour(int [,] E, int [,] F, MaxPairs)
 int n = E.getSize();
 range Rng = 1..n;
 Solver<CP> cp();
 var<CP>{int} succ[Rng](cp,Rng);
 var<CP>{int} tour(cp, 0..System.getMAXINT());
 minimize<cp> tour subject to {
 ...
 } using {
 ...
 }
 forall(i in Rng) sol[i] = x[i];
 return sol;
}

b) The	goals	and	constraints	specified	would	be	implemented	with	this	encoding	as	follows:	
• The	succ	variables	represent	an	Hamiltonian	tour:	
 cp.post(circuit(succ));

• The	tour	to	be	minimised:	
 cp.post(tour == sum(i in Rng) E[i,succ(i)];

• No	forbiden	arcs	are	used:	
 forall(i in F.getRange(0))
 cp.post(succ[[F[i,1]] != [F[i,2]);

• No	pair	of	consecutive	arcs	exceeds maxPairs length:	
 forall(i in F.getRange(0))
 cp.post(maxPairs >= E[i,succ[i]]+ E[succ[i],succ[succ[i]]);

c) The	 simpler	 heuristic	 is	 the	 standard	 first-fail	 heuristic	 implemented	 on	 the succ decision	
variables	(the	other	decision	variable, tour, is	implied)	

labelFF(x);
One	might	 try	 a	 heuristic	 that	 assigns	 arcs	 with	 least	 length	 first,	 although	 the	 success	 of	 this	
strategy	might	depend	on	the	forbidden	arcs,	and	is	very	much	instance	dependent.	

